scholarly journals Touch Probe Method of Orthopedic Implant Identification

2019 ◽  
Vol 7 (2) ◽  
pp. 4-10
Author(s):  
Joby V John ◽  
Manikandan

Orthopedic implants are a type of joint implant such as knee and hip implant to replace the severely injured or diseased joints for people who suffer from joint problems and bring those people back to a normal life. The total number of knee and hip replacement surgeries per year in US keeps increasing in the recent years and will hit 3.48 million in 20 years. However, once the implant replacement surgery is finished, doctors and surgeons have difficulty to observe and obtain the detailed information of the implant. Existing methods for implant identification suffer from several drawbacks. First, the information is not stored on the implant but somewhere else, which can raise the risk of data loss or counterfeiting. Second, most hospitals use paper based archives to keep the patient history whose management is a huge cost. Third, it takes much time to search for the implant and patient information, which does not only increase the risk of mistakes but also increases the cost. Aiming at providing an efficient and accurate way for orthopedic implant identification to reduce time and cost, a method of using radio-frequency identification (RFID) technology, a wire- less radio frequency communication technology, for orthopedic implant identification has been proposed.

ForScience ◽  
2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Cátia Valéria Dos Santos Passos Brito ◽  
Welson Barbosa Dos Santos ◽  
Cristiane Xavier Galhardo ◽  
Vivianni Marques Leite dos Santos

A realização de um inventário não é uma tarefa fácil, principalmente em universidades federais, que possuem muitos bens permanentes. A gestão patrimonial é realizada através de procedimentos de identificação, tombamento, localização, contagem, preservação e desfazimento de bens. Devido a grande quantidade de informações e necessidade de segurança, confiabilidade e celeridade nos processos, deve-se buscar alternativas para melhorar a gestão, reduzir índices de não conformidades e aprimorar o planejamento de compras. O sistema RFID (Radio-Frequency Identification), por exemplo, funciona por meio da comunicação via radiofrequência, com uso de um chip passivo inserido em etiqueta inteligente. Dessa forma, o objetivo deste artigo é analisar a viabilidade do uso da tecnologia RFID para o aperfeiçoamento da gestão patrimonial na Universidade Federal do Vale do São Francisco - Univasf por meio do levantamento de suas vantagens, desvantagens e custos para implantação. Para isto, são realizadas pesquisas em periódicos e bases de patentes, além da realização de entrevistas e análise documental. Entre os principais resultados, constata-se que o processo de gerenciamento de bens da Univasf é realizado de forma manual e desgastante para servidores membros de comissão, para a qual são convocados sem consulta prévia, verificando-se ainda que os prazos são, comumente, ultrapassados. Por outro lado, o custo para implantação do sistema RFID para controle do número atual de bens da Univasf corresponde a apenas 0,78% do valor alocado para as ações orçamentárias referentes às despesas correntes e investimentos, constituindo fatores favoráveis a sua aquisição pela Instituição.Palavras-chave: Radiofrequência. Gestão patrimonial. Universidades públicas. Internet das coisas. Smart tags in the public administration: feasibility analysis in thepatrimonial control of the UNIVASFAbstractThe construction of an inventory is not an easy task, especially at federal universities, which have many permanent assets. The patrimonial management is carried through procedures of identification, tipping, localization, counting, preservation and undoing of assets. Due to the large amount of information and the need for security, reliability and speed in the processes, alternatives should be sought to improve management, reduce nonconformity rates, and improve procurement planning. The RFID (Radio Frequency Identification) system, for example, works by means of radio frequency communication, using a passive chip inserted in a smart tag. Thus, the objective of this paper is to analyze the feasibility of using RFID technology to improve asset management at the Federal University of Vale do São Francisco -Univasf by surveying its advantages, disadvantages and costs for implementation. For this, research is carried out in journals and patent bases, as well as interviews and document analysis. Among the main results, it can be seen that Univasf's asset management process is carried out manually and exhausting for commission member servers, to which they are summoned without prior consultation, and it is also verified that the deadlines are commonly outdated. On the other hand, the cost of implementing the RFID system to control Univasf's current number of assets corresponds to only 0.78% of the amount allocated to budget actions related to current expenses and investments, constituting favorable factors for their acquisition by the Institution.Keywords: Radiofrequency. Patrimonial Management. Public universities. Internet of things. 


2008 ◽  
Vol 3 (1) ◽  
pp. 55-70
Author(s):  
Dharmaraj Veeramani ◽  
Jenny Tang ◽  
Alfonso Gutierrez

Radio frequency identification (RFID) is a rapidly evolving technology for automatic identification and data capture of products. One of the barriers to the adoption of RFID by organizations is difficulty in assessing the potential return on investment (ROI). Much of the research and analyses to date of ROI in implementing RFID technology have focused on the benefits to the retailer. There is a lack of a good understanding of the impact of RFID at upper echelons of the supply chain. In this paper, we present a framework and models for assessing the value of RFID implementation by tier-one suppliers to major retailers. We also discuss our real-life application of this framework to one of Wal-Mart’s top 100 suppliers


2012 ◽  
Vol 52 (7) ◽  
pp. 665 ◽  
Author(s):  
Jessica E. Morris ◽  
Greg M. Cronin ◽  
Russell D. Bush

This overview discusses how precision sheep management could be utilised in the Australian sheep industry to improve production efficiency and reduce animal welfare concerns due to low monitoring frequency by stockpeople. The concept of precision sheep management is described. This is a system in which sheep are managed as individuals or small groups rather than as a (whole) flock. Precision sheep management utilises the application of radio frequency identification technology, enabling producers to better monitor sheep in extensive situations, and contribute to improved efficiency of management and sheep welfare. Examples of combining radio frequency identification with other technologies such as walk-over-weighing and Pedigree Matchmaker are discussed. These technologies provide producers with tools to improve the cost effectiveness of, and labour efficiency associated with, collecting data on individual animals. The combined technologies should also improve consistency and reliability of information, enhancing decision-making by producers, for example, from regular monitoring of biometric variables such as liveweight, or calculating breeding values to enable superior genetic comparisons over time.


2019 ◽  
Vol 8 (4) ◽  
pp. 1743-1745

Vehicular traffic can hardly escape the list of critical problems in the world that demand to be resolved at the earliest. Attempting to eradicate the factors that led to this menace is a process too long for the current critical situation to wait for and stay unattended. Considering the serious consequences that ensue as a result of traffic jams, some solution that can bring an expeditious remedy needs to be found in order to handle the current situation. And this paper is aimed at proposing one such solution which can considerably ameliorate the degree of the mayhem that is prevailing, using Radio Frequency IDentification (RFID) technology.


2020 ◽  
Vol 20 (2) ◽  
pp. 127-132
Author(s):  
Namjin Cho ◽  
Dongsu Im ◽  
Jungdon Kwon ◽  
Teayeon Cho ◽  
Junglim Lee

Nuclear power plants store and use flammable gases and liquids and consequently risk explosions. Therefore, nuclear plants employ explosion-proof equipment; however, this equipment is not always sufficiently maintained. This lack of maintenance can affect the safety-related equipment intended to shut down the reactor, because the explosion-proof equipment itself can act as an ignition source. Radio-frequency identification (RFID) technology should be explored as a tool to improve both the convenience and efficiency of maintenance. We analyzed and compared explosion-proof RFID technology that can be used in nuclear power plants.


Author(s):  
Joseph Hlady ◽  
Somen Mondal

The use of Radio Frequency Identification (RFID) has grown substantially in the past few years. Driven mostly by the retail supply chain management industry and by inventory control (loss prevention), RFID technology is finding more acceptance in the security and personal tracking sectors beyond simple pass cards. This growth has of course resulted in greater acceptance of RFID technology and more standardization of process and systems as well as decreased per unit costs. The oil and gas industry is being exposed to the potential use of RFID technology, mostly through the safety and equipment inspection portion of construction management. However, the application of RFID technology is expected to expand to the material tracking and asset management realms in the near future. Integrating the information provided by RFIDs with EPCM project and owner/operator Geographic Information Systems (GIS) is a logical next step towards maximizing the value of RFID technology. By linking assets tracked in the field during movement, lay-down and construction to a GIS, projects will have accurate, real-time data on the location of materials as well as be able to query about those assets after commissioning. This same capability is being modified for post-commission use of RFID with facility GISs. This paper outlines how existing GISs used during the EPCM phases and those employed after commissioning can display, utilize and analyze information provided by RFID technology.


Author(s):  
Andriana Dimakopoulou ◽  
Katerina Pramatari ◽  
Angeliki Karagiannaki ◽  
George Papadopoulos ◽  
Antonis Paraskevopoulos

Sign in / Sign up

Export Citation Format

Share Document