scholarly journals Optimal Design of Hybrid Optimization Technique for Balancing Inverted Pendulum System

2020 ◽  
Vol 19 ◽  

Inverted Pendulum system is one of the most exciting problems in control theory. In this research work, a new variant of Grey Wolf optimizer (GWO) via Particle Swarm Optimization (PSO) based on Adaptive Constants (AC) is proposed. The proposed technique (GWO/PSO-AC) is tested via twenty-three benchmark functions and compared to GWO based on PSO without adaptive constants (GWO/PSO). The suggested technique shows superiority in determining the optimal solutions for the well-established benchmark test functions with high computing performance compared to alternative techniques. The proposed GWO/PSO-AC technique, is employed to tune the parameters of the Variable Structure Adaptive Fuzzy (VSAF) controller in addition to the Reduced Linear Quadratic Regulator (RLQR) suggested by the authors. Both controllers are used to stabilize the cart position and to swing up the pendulum angle. The RLQR has an advantage over regular LQR, which is, the numberof the required parameters to obtain the required LQR gains is reduced. The proposed technique is compared with two optimization techniques. The proposed technique achieves high performance for both the cart position and the pendulum angle. The attained results are very promising.

2021 ◽  
Vol 12 (1) ◽  
pp. 77-97
Author(s):  
M. E. Mousa ◽  
M. A. Ebrahim ◽  
Magdy M. Zaky ◽  
E. M. Saied ◽  
S. A. Kotb

The inverted pendulum system (IPS) is considered the milestone of many robotic-based industries. In this paper, a new variant of variable structure adaptive fuzzy (VSAF) is used with new reduced linear quadratic regulator (RLQR) and feedforward gain for enhancing the stability of IPS. The optimal determining of VSAF parameters as well as Q and R matrices of RLQR are obtained by using a modified grey wolf optimizer with adaptive constants property via particle swarm optimization technique (GWO/PSO-AC). A comparison between the hybrid GWO/PSO-AC and classical GWO/PSO based on multi-objective function is provided to justify the superiority of the proposed technique. The IPS equipped with the hybrid GWO/PSO-AC-based controllers has minimum settling time, rise time, undershoot, and overshoot results for the two system outputs (cart position and pendulum angle). The system is subjected to robustness tests to ensure that the system can cope with small as well as significant disturbances.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668427 ◽  
Author(s):  
Te-Jen Su ◽  
Shih-Ming Wang ◽  
Tsung-Ying Li ◽  
Sung-Tsun Shih ◽  
Van-Manh Hoang

The objective of this article is to optimize parameters of a hybrid sliding mode controller based on fireworks algorithm for a nonlinear inverted pendulum system. The proposed controller is a combination of two modified types of the classical sliding mode controller, namely, baseline sliding mode controller and fast output sampling discrete sliding mode controller. The simulation process is carried out with MATLAB/Simulink. The results are compared with a published hybrid method using proportional–integral–derivative and linear quadratic regulator controllers. The simulation results show a better performance of the proposed controller.


2019 ◽  
Vol 1 (28) ◽  
pp. 50-55
Author(s):  
Tan Thanh Nguyen

In this article, the author used the matlab software to simulate and then compared the results between the classical LQR (Linear Quadratic Regulator) controller and another method to adjust the matrix parameters toward optimization of the LQR controller. It is the GA (Genetic Algorithm) method to optimize the matrix of the LQR controller, and the results have  been verified on the nonlinear pendulum model. The Genetic Algorithm is a modern control algorithm, which is widely applied in research and practice. The main objective of this article is to use the GA algorithm in order to optimize the matrix parameters of LQR controller, whichcontrolled the position and angle of the nonlinear inverted pendulum at the stable balance point. The matlab-based simulating results showed that  the system has operated properly to the requirements and the output response has reached an equilibrium position of about 2.5 seconds.


2021 ◽  
Vol 13 (3) ◽  
pp. 79-90
Author(s):  
K. Z. MIRZA

The inverted pendulum is a non-linear control problem permanently tending towards instability. The main aim of this study is to design a controller capable enough to work within the given conditions while also keeping the pendulum erect given the impulsive movement of the cart to which it is joint via a hinge. The first half of the paper presents the mathematical modelling of the dynamic system, together with the design of a linear quadratic regulator (LQR). This paper also discusses a novel adaptive control mechanism employing a Kalman filter for the mobile inverted pendulum system (MIPS). In the second half of the paper, a Gaussian Quadratic Linear Controller (LQG) is adapted to improve on previous deficiencies. The simulation is done through Simulink and results show that both controllers are capable of managing the multiple output model. However, data from simulations clearly showed that an LQG controller is a better choice.


2017 ◽  
Vol 2 (9) ◽  
pp. 1-5
Author(s):  
Ghassan A. Sultan ◽  
Ziyad K. Farej

Double inverted pendulum (DIP) is a nonlinear, multivariable and unstable system. The inverted pendulum which continually moves toward an uncontrolled state represents a challenging control problem. The problem is to balance the pendulum vertically upward on a mobile platform that can move in only two directions (left or right) when it is offset from zero stat. The aim is to determine the control strategy that deliver better performance with respect to pendulum's angles and cart's position. A Linear-Quadratic-Regulator (LQR) technique for controlling the linearized system of double inverted pendulum model is presented. Simulation studies conducted in MATLAB environment show that the LQR controller are capable of controlling the multi output double inverted pendulum system. Also better performance results are obtained for controlling heavy driven part DIP system.


2019 ◽  
Vol 16 (2) ◽  
pp. 172988141983327 ◽  
Author(s):  
Sondarangallage DA Sanjeewa ◽  
Manukid Parnichkun

Balancing control of a rotary double inverted pendulum system is a challenging research topic for researchers in dynamics control field because of its nonlinear, high degree-of-freedom, under actuated and unstable characteristics. The system always works under uncertainties and disturbances. Many control algorithms fail or ineffectively control the rotary double inverted pendulum system. In this article, mixed sensitivity H∞ control is proposed to balance the rotary double inverted pendulum system. The controller is proposed to ensure the robust stability and enhance the time domain performance of the system under uncertainties and disturbances. Structure of the system, dynamics model and controller synthesis are presented. For performance evaluation, the proposed mixed sensitivity H∞ controller is compared with linear quadratic regulator from both simulation and experiment on the rotary double inverted pendulum system. The results show high performance of the proposed controller on the rotary double inverted pendulum system with model uncertainties and external disturbances.


2014 ◽  
Vol 494-495 ◽  
pp. 1118-1121
Author(s):  
Shuo Mei Wu ◽  
Jian Wei Song ◽  
Wen Qing Zhang

The state space expression can be deduced by establishing the mathematical model of inverted pendulum system. In this paper, linear quadratic regulator (LQR) is used to control the inverted pendulum system, providing better balance between system robustness stability and rapidity. The simulation structure shows that the better the system anti-interference capability is, the shorter its recovery time is. Good control effect can be achieved by applying linear quadratic optimal control in the control of double inverted pendulum balancing system.


2012 ◽  
Vol 433-440 ◽  
pp. 6999-7003 ◽  
Author(s):  
Hong Mei Wang ◽  
Shi Jin Jiang

Inverted pendulum system is a nonlinear, coupling, multi-variable and unstable system. In this paper, Linear Quadratic Regulator (LQR) is used to achieve optimal control of single inverted pendulum. First, the state-space model of the system is created. Then state feedback gain is calculated by selecting suitable weight coefficient matrix. Because the inverted pendulum system exists all kinds of disturbs inevitably, the states have errors and the accuracy of control drops. So square root filter is used to estimate states on line before LQR. The simulation results show control effect has obvious improvement because of adopting square root filter.


2020 ◽  
Vol 9 (3) ◽  
pp. 914-923
Author(s):  
Mila Fauziyah ◽  
Zakiyah Amalia ◽  
Indrazno Siradjuddin ◽  
Denda Dewatama ◽  
Rendi Pambudi Wicaksono ◽  
...  

The system of a cart inverted pendulum has many problems such as  nonlinearity, complexity, unstable, and underactuated system. It makes this system be a benchmark for testing many control algorithm. This paper  presents a comparison between 2 conventional control methods consist of a linear quadratic regulator (LQR) and pole placement. The comparison  indicated by the most optimal steps and results in the system performance  that obtained from each method for stabilizing a cart inverted pendulum system. A mathematical model of DC motor and mechanical transmission are included in a mathematical model to minimize the realtime implementation problem. From the simulation, the obtained system performance shows that each method has its advantages, and the desired pendulum angle and cart position reached.


2011 ◽  
Vol 383-390 ◽  
pp. 7258-7264 ◽  
Author(s):  
Zhao Yang Xu ◽  
Xiao Diao Huang

In this paper, based on linear quadratic optimal control design the controller of single inverted pendulum system, using the current epidemic method of Co-simulation to play each of the strengths of two software for simulation, Through two methods of the static and dynamic to observe and analyze the quality of feedback controller the based on linear quadratic optimal control.


Sign in / Sign up

Export Citation Format

Share Document