scholarly journals Study on Earthquake-induced Structural Pounding Between Two Adjacent Building Structures with Unequal Heights

2021 ◽  
Vol 20 ◽  
pp. 196-208
Author(s):  
Pedro Folhento ◽  
Rui Carneiro De Barros ◽  
Manuel Braz-César

Structural pounding has been found to have a significant influence on the dynamic behavior of building structures under earthquake excitations. This phenomenon is more probable when the buildings have insufficient separation distance and substantial different dynamic properties. In large cities, it is more common for adjacent buildings to have unequal heights, leading to different demands in the structures’ stories under earthquake-induced pounding. Hence, in this study five different buildings’ configurations with equal or unequal heights and subjected to different ground motions are considered, to study how pounding influences the dynamic behavior of the involved structures. It was found, among other results, that the peak responses tend to suffer amplifications at the stories of the taller building above the height of the shorter building.

2016 ◽  
Vol 713 ◽  
pp. 26-29 ◽  
Author(s):  
Barbara Sołtysik ◽  
Tomasz Falborski ◽  
Robert Jankowski

Earthquakes are the most unpredictable damaging loads which can affect civil engineering structures. Due to insufficient separation distance between adjacent structures with different dynamic properties, structural collisions may occur during ground motions. Although the research on structural pounding has recently been much advanced, the studies have mainly been conducted for concrete structures. The aim of this paper is to show the results of experimental investigation, focused on dynamic behaviour of closely-separated three models of steel structures which have been subjected to damaging earthquake excitations. The study was performed using three models of steel towers with different dynamic parameters and various distances between the structures. The acceleration time histories of the Kobe and the Northridge earthquakes were applied as the seismic excitation. The unidirectional shaking table, located at the Gdansk University of Technology (Poland), was used in the experimental study. The results have confirmed that collisions may lead to the increase in the structural response, although they may also play a positive role, depending on the size of the separation gap between the structures.


2018 ◽  
Vol 8 (6) ◽  
pp. 3565-3569
Author(s):  
M. S. Masmoum ◽  
M. S. A. Alama

This research discusses the feasibility of using the required minimum separation distance based on SBC 301-2007. Moment resistance frames were designed with expansion joints requiring 400mm separation distance. Nonlinear response history analysis was conducted with four ground motions selected and scaled to match the risk-targeted response spectrum of NEOM city based on ASCE 7-16 provisions. An equivalent spring constant value based on floor lateral stiffness was selected as a gap link stiffness. Finally, an evaluation for the pounding response of adjacent blocks is presented along with the conclusions.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
S. M. Khatami ◽  
H. Naderpour ◽  
R. C. Barros ◽  
R. Jankowski

Insufficient separation distance between adjacent buildings may lead to serious damages during earthquakes due to structural pounding. The best way to prevent collisions is to provide sufficiently large separation distance between structures. In this paper, the periods of two closely spaced linear and nonlinear buildings have been investigated so as to accurately assess the minimum in-between separation gap. A new equation to calculate the effective periods of inelastic buildings has been proposed, and its effectiveness has been verified through numerical analysis. The results of the investigation conducted for inelastic buildings with different number of stories indicate that the proposed formula allows us to prevent earthquake-induced structural pounding by ensuring an adequate value of seismic gap.


2013 ◽  
Vol 40 (7) ◽  
pp. 655-662
Author(s):  
George K. Georgoussis

Building structures of low or medium height are usually designed with a pseudostatic approach using a base shear much lower than that predicted from an elastic spectrum. Given this shear force, the objective of this paper is to evaluate the effect of the element strength assignment (as determined by several building codes) on the torsional response of inelastic single-storey eccentric structures and to provide guidelines for minimizing this structural behaviour. It is demonstrated that the expected torque about the centre of mass (CM) may be, with equal probability, positive (counterclockwise) or negative (clockwise). This result means that the torsional strength should also be provided in equal terms in both rotational directions, and therefore the base shear and torque (BST) surface of a given system must be symmetrical (or approximately symmetrical). In stiffness-eccentric systems, appropriate BST surfaces may be obtained when a structural design is based on a pair of design eccentricities in a symmetrical order about CM, and this is shown in representative single-storey building models under characteristic ground motions.


Author(s):  
Carlos Mendez-Galindo ◽  
Gianni Moor ◽  
Borja Baillés

<p>As the expectations of populations all around the world continue to increase in relation to the resilience of their bridges and buildings to hazards such as seismic events, the need for appropriate solutions – which can be applied both to new structures and to existing ones – grows accordingly. A wide range of solutions is available, such as shock absorbers and shock transmission units which can be used to dampen or optimally transmit forces that would otherwise damage a structure, and seismic isolators which can protect buildings and bridges from destructive ground motions. Expansion joints can be equipped with features that protect a bridge, at its key movement nodes, from damage due to larger-than-expected movements, and structural health monitoring (SHM) can be used to enable hazards to be identified and to provide immediate notification of any event that might make a structure unsafe. Various such methods of enhancing resilience of structures to seismic and other hazards are described.</p>


Author(s):  
Heather L. Lai ◽  
Cuiyu Kuang ◽  
Jared Nelson

The development of flexible, viscoelastic materials for consumer 3D printers has provided the opportunity for a wide range of devices with damping behavior such as tuned vibration isolators to be innovatively developed and inexpensively manufactured. However, there is currently little information available about the dynamic behavior of these 3D printed materials necessary for modeling of dynamic behavior prior to print. In order to fully utilize these promising materials, a deeper understanding of the material properties, and the subsequent dynamic behavior is critical. This study evaluates the use of three different types of models: transient response, frequency response and hysteretic response to predict the dynamic behavior of viscoelastic 3D printed materials based on static and dynamic material properties. Models of viscoelastic materials are presented and verified experimentally using two 3D printable materials and two traditional viscoelastic materials. The experimental response of each of the materials shows agreement with the modeled behavior, and underscores the need for improved characterization of the dynamic properties of viscoelastic 3D printable materials.


Author(s):  
Lin Wang ◽  
Qiao-Yun Qin ◽  
Fan Zhang ◽  
Cheng-Wen Tan

Abstract Magnesium alloy is very attractive in many industrial applications due to its low density. The structure-property relationships of the magnesium alloy under quasi-static loading have been extensively investigated. However, the dynamic behavior, particularly the mechanism of high-rate plastic deformation, of the magnesium alloy requires more in-depth investigations. In this paper, the effect of aging treatment on the quasi-static and dynamic properties of a typical rare earth Mg-Gd-Y magnesium alloy is investigated. In particular, the plastic deformation mechanism under dynamic compression loading is discussed. Split Hopkinson Pressure Bar (SHPB) was used to carry out dynamic compression tests with controllable plastic deformation by using stopper rings. The experimental results demonstrate that both static and dynamic properties of the Mg-Gd-Y alloy vary under various aging treatment conditions (under-aged, peak-aged and over-aged conditions), due to two different kinds of second phases: remnant micro size phase from solid solution treatment and nano precipitation from aging treatment. The results of microstructure characterization and statistic analysis of the metallographic phase are presented. The area fraction of the twinned grains increases due to aging treatment and dynamic loading. The main plastic deformation mechanism of the rare earth Mg-Gd-Y magnesium alloy is possibly dislocation slip, rather than twinning for the conventional AZ31 magnesium alloy under high strain rate loading.


Sign in / Sign up

Export Citation Format

Share Document