scholarly journals A Self Threshold Voltage Compensated Rectifier for RF Energy Harvesting using 45nm CMOS Technology

2021 ◽  
Vol 20 ◽  
pp. 244-248
Author(s):  
Chinmoy Bharali ◽  
Manash Pratim Sarma

A high frequency rectifier is the core of a RF energy harvesting system. It should offer a very good efficiency at low input power levels and to obtain that compensation of threshold voltage is a very important aspect. A threshold compensation scheme for MOSFETS for RF rectifier applicable in RF energy harvesting system is presented in this paper. The switching of the MOSFET is improved with overall enhancement of output rise time of the system. The design emphasis is to have a simplified circuit without the requirement of any external source so as to achieve self-sustainability in the true sense. The rectifier circuit is derived from the basic Dickson charge pump model and is evaluated using 45nm CMOS process. The design has utilized Metal Oxide Semiconductor Field Effect Transistor instead of basic diodes which ensures low power along with fabrication feasibility. The maximum measured PCE of the design is obtained to be 33% at 4dBm input power level at 500Mhz frequency with 1 Kilo Ohm load resistance. The output transient response rise time has been measured to be 85ns at 500MHz and 50.10ns at 1Ghz.

2015 ◽  
Vol 35 (2) ◽  
pp. 421-441 ◽  
Author(s):  
Lian-xi Liu ◽  
Jun-chao Mu ◽  
Ning Ma ◽  
Wei Tu ◽  
Zhang-ming Zhu ◽  
...  

Author(s):  
Ahmed Al-Khayari ◽  
Hamed Al-Khayari ◽  
Sulaiman Al-Nabhani ◽  
Mohammed M. Bait-Suwailam ◽  
Zia Nadir

2012 ◽  
Vol 132 ◽  
pp. 49-69 ◽  
Author(s):  
Norashidah Md. Din ◽  
Chandan Kumar Chakrabarty ◽  
Aima Bin Ismail ◽  
Kavuri Kasi Annapurna Devi ◽  
Wan-Yu Chen

With the advent of modern wireless communication technology and increasing requirement of high speed network, network life-time is becoming a major area of concern. The need of network power management is gaining attention with the high data network in place and is making a paradigm shift towards green communication. Hence embedding the RF energy harvesting (EH) capability in a wireless network is becoming inevitable. To make RF EH a reality a high frequency rectifier is indeed indispensable along with other circuits in the system. The RF energy needs to be harvested from the available sources in the ambience. It is also seen that the current generation of RF sources radiates at a very low signal power. So, to successfully convert and store this energy, the rectifier must not only be able to provide a sufficiently higher percentage conversion ratio (PCE) but also be able to cater it at a lower range of signal power. This paper presents the design and analysis of a simplified 3-transistor high frequency rectifier. A threshold voltage compensation technique is also incorporated and it achieves a PCE upto 85% at -2dBm in its single stage implementation. This is observed to be one of the highest in-class efficiency as compared to recently reported designs. From the frequency response it is seen to exhibit wide band performance spanning almost all popular wireless bands. The dynamic power dissipation (DPD) is calculated to be 6.25pW at -2dB, whereas the leakage power (LP) is observed to be zero.


Sign in / Sign up

Export Citation Format

Share Document