scholarly journals Development of a Robust Scalar Control System for an Induction Squirrel-cage Motor Based on a Linearized Vector Model

2022 ◽  
Vol 21 ◽  
pp. 1-9
Author(s):  
N. A. Tseligorov ◽  
A. I. Ozersky ◽  
A. V. Chubukin ◽  
E. N. Tseligorova

The paper considers the problem of developing a digital system for an induction motor speed control which has a sensor and a speed regulator to increase accuracy of speed control. Speed control is carried out by a scalar method due to consistent change in the stator frequency and voltage. To obtain the uniformity of the motor overload capability in a given range the control mode is used associated with maintaining uniformity of flux linkage of the motor stator. Induction motor scalar models do not possess high accuracy and their parameters and their parameters can vary over a wide range, which complicates the controller design and achievement of robustness of the speed control system. To eliminate these disadvantages, it is proposed to use a vector model in a rotating coordinate system having subjected it to linearization at different points of the operating mode with the account of the adopted law of frequency control, to ensure robust absolute stability of the system on the basis of application of a graphical method for constructing a modified amplitude-phase characteristic.

Author(s):  
Rizana Fauzi ◽  
Dedid Cahya Happyanto ◽  
Indra Adji Sulistijono

Induction Motor in Electrical drive system at a accelleration speed for example in electric cars have a hard speed setting is set on a wide range, causing an inconvenience for motorists and a fast response is required any change of speed. It is necessary for good system performance in control motor speed and torque at low speed or fast speed response, which is operated by Indirect Field Oriented Control (IFOC). Speed control on IFOC methods should be better to improving the performance of rapid response in the induction motor. In this paper presented a method of incorporation of Fuzzy Logic Controller and Backstepping (Fuzzy-Backstepping) to improve the dynamically response speed and torque in Induction Motor on electric car, so we get smoothness at any speed change and braking as well as maximum torque of induction motor. Test results showed that Fuzzy-Backstepping can increase the response to changes speed in electric car. System testing is done with variations of the reference point setting speed control system, the simulation results of the research showed that the IFOC method is not perfect in terms of induction motor speed regulation if it’s not use speed control. Fuzzy-Backstepping control is needed which can improve the response of output, so that the induction motor has a good performance, small oscillations when start working up to speed reference.Keywords: Fuzzy-Backstepping, IFOC, induction motor


Author(s):  
Deacha Puangdownreong

Over two decades, the fractional (non-integer) order PID (FOPID or PIλDµ ) controller was introduced and demonstrated to perform the better responses in comparison with the conventional integer order PID (IOPID). In this paper, the design of an optimal FOPID controller for a DC motor speed control system by the flower pollination algorithm (FPA), oneof the most efficient population-based metaheuristic optimization searching techniques, is proposed. Based on the modern optimization framework, five parameters of the FOPID controller are optimized by the FPA to meet the response specifications of the DC motor speed control system and defined as constraint functions. Results obtained by the FOPID controller are compared with those obtained by the IOPID designed by the FPA. As the simulation results show, the FOPID can provide significantly superior speed responses to the IOPID.


2014 ◽  
Vol 889-890 ◽  
pp. 947-950
Author(s):  
Shuo Wu ◽  
Guang Jun Ma

This paper introduces the composition of double closed loop DC speed control system of DC motor speed and current, it is described the working principle of DC PWM converter and the calculating method of the pulse width modulation technology. Using the Matlab software to the induction motor system of modeling and simulation based on the technology of SPWM . Observed in the steady state and dynamic system using SPWM control mode and the influence of control parameters. Finally, experimental results show that the SPWM technology for effective control of double closed loop DC speed control system


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 961 ◽  
Author(s):  
Ahmed A. Zaki Diab ◽  
Abou-Hashema M. El-Sayed ◽  
Hossam Hefnawy Abbas ◽  
Montaser Abd El Sattar

In this paper, a robust speed control scheme for high dynamic performance sensorless induction motor drives based on the H_infinity (H) theory has been presented and analyzed. The proposed controller is robust against system parameter variations and achieves good dynamic performance. In addition, it rejects disturbances well and can minimize system noise. The H controller design has a standard form that emphasizes the selection of the weighting functions that achieve the robustness and performance goals of motor drives in a wide range of operating conditions. Moreover, for eliminating the speed encoder—which increases the cost and decreases the overall system reliability—a motor speed estimation using a Model Reference Adaptive System (MRAS) is included. The estimated speed of the motor is used as a control signal in a sensor-free field-oriented control mechanism for induction motor drives. To explore the effectiveness of the suggested robust control scheme, the performance of the control scheme with the proposed controllers at different operating conditions such as a sudden change of the speed command/load torque disturbance is compared with that when using a classical controller. Experimental and simulation results demonstrate that the presented control scheme with the H controller and MRAS speed estimator has a reasonable estimated motor speed accuracy and a good dynamic performance.


Sign in / Sign up

Export Citation Format

Share Document