Anti-Inflammatory Activity of Austroinulin from Stevia rebaudiana in LPS-induced RAW264.7 Cells

2012 ◽  
Vol 41 (4) ◽  
pp. 456-461 ◽  
Author(s):  
Myung-Woo Byun
2020 ◽  
Vol 48 (02) ◽  
pp. 429-444
Author(s):  
Minkyeong Jo ◽  
Young-Su Yi ◽  
Jae Youl Cho

Pharmacological activities of some Leguminosae family members were reported. Pharmacological activities of Archidendron lucidum, a Leguminosae family member have never been explored. Therefore, this study investigated anti-inflammatory effects of an Archidendron lucidum methanol extract (Al-ME). In this study, anti-inflammatory effects of Al-ME were investigated in LPS-stimulated RAW264.7 cells and HCl/EtOH-induced gastritis mice by MTT assay, nitric oxide (NO) production assay, semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), luciferase reporter assay, and Western blotting. High-performance liquid chromatography (HPLC) analysis identified ethnopharmacological compounds in Al-ME. Al-ME inhibited NO production without cytotoxicity in peritoneal macrophages and RAW264.7 cells stimulated with LPS or Pam3CSK4. Al-ME downregulated mRNA expression of inflammatory genes (inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2)) and pro-inflammatory cytokines (tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]), interleukin-1[Formula: see text] (IL-1[Formula: see text]), and IL-6). Al-ME exerted anti-inflammatory activity in LPS-stimulated RAW264.7 cells by inhibiting nuclear factor-kappa B (NF-[Formula: see text]B) signaling pathway. HPLC analysis identified quercetin, luteolin, and kaempferol as major anti-inflammatory components in Al-ME. Al-ME ameliorated HCl/EtOH-induced gastritis symptoms in mice by suppressing iNOS and IL-6 mRNA expressions and I[Formula: see text]B[Formula: see text] phosphorylation. Therefore, these results suggest that Al-ME exhibited anti-inflammatory activity by targeting NF-[Formula: see text]B signaling pathway, implying that Al-ME could be potent anti-inflammatory medications to prevent and treat inflammatory diseases.


2019 ◽  
Vol 47 (02) ◽  
pp. 385-403 ◽  
Author(s):  
Ha Na Kim ◽  
Gwang Hun Park ◽  
Su Bin Park ◽  
Jeong Dong Kim ◽  
Hyun Ji Eo ◽  
...  

Sageretia thea (S. thea) commonly known as Chinese sweet plum or Chinese bird plum has been used for treating hepatitis and fevers in Korea and China. S. thea has been reported to exert anti-oxidant, anticancer and anti-human immunodeficiency virus activity. However, there is little study on the anti-inflammatory activity of S. thea. Thus, we evaluated the anti-inflammatory effect of extracts of leaves (ST-L) and branches (ST-B) from Sageretia thea in LPS-stimulated RAW264.7 cells. ST-L and ST-B significantly inhibited the production of the pro-inflammatory mediators such as NO, iNOS, COX-2, IL-1[Formula: see text] and IL-6 in LPS-stimulated RAW264.7 cells. ST-L and ST-B blocked LPS-induced degradation of I[Formula: see text]B-[Formula: see text] and nuclear accumulation of p65, which resulted in the inhibition of NF-[Formula: see text]B activation in RAW264.7 cells. ST-L and ST-B also attenuated the phosphorylation of ERK1/2, p38 and JNK in LPS-stimulated RAW264.7 cells. In addition, ST-L and ST-B increased HO-1 expression in RAW264.7 cells, and the inhibition of HO-1 by ZnPP reduced the inhibitory effect of ST-L and ST-B against LPS-induced NO production in RAW264.7 cells. Inhibition of p38 activation and ROS elimination attenuated HO-1 expression by ST-L and ST-B, and ROS elimination inhibited p38 activation induced by ST-L and ST-B. ST-L and ST-B dramatically induced nuclear accumulation of Nrf2, but this was significantly reversed by the inhibition of p38 activation and ROS elimination. Collectively, our results suggest that ST-L and ST-B exerts potential anti-inflammatory activity by suppressing NF-[Formula: see text]B and MAPK signaling activation, and activating HO-1 expression through the nuclear accumulation of Nrf2 via ROS-dependent p38 activation. These findings suggest that ST-L and ST-B may have great potential for the development of anti-inflammatory drug to treat acute and chronic inflammatory disorders.


2011 ◽  
Vol 27 (1) ◽  
pp. 11-14 ◽  
Author(s):  
Dereje Damte ◽  
Md. Ahsanur Reza ◽  
Seung-Jin Lee ◽  
Woo-Sik Jo ◽  
Seung-Chun Park

2009 ◽  
Vol 9 (7-8) ◽  
pp. 878-885 ◽  
Author(s):  
Mee-Young Lee ◽  
Bo-Young Park ◽  
Ok-Kyoung Kwon ◽  
Ji-Eun Yuk ◽  
Sei-Ryang Oh ◽  
...  

2018 ◽  
Vol 46 (06) ◽  
pp. 1281-1296 ◽  
Author(s):  
Sang Yun Han ◽  
Young-Su Yi ◽  
Seong-Gu Jeong ◽  
Yo Han Hong ◽  
Kang Jun Choi ◽  
...  

Lilium bulbs have long been used as Chinese traditional medicines to alleviate the symptoms of various human inflammatory diseases. However, mechanisms of Lilium bulb-mediated anti-inflammatory activity and the bioactive components in Lilium bulbs remain unknown. In the present study, the anti-inflammatory activity of Lilium bulbs and the underlying mechanism of action were investigated in macrophages using Lilium bulb ethanol extracts (Lb-EE). In a dose-dependent manner, Lb-EE inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and bone marrow-derived macrophages (BMDMs) without causing significant cytotoxicity. Lb-EE also down-regulated mRNA expression of inflammatory genes in LPS-stimulated RAW264.7 cells, which included inducuble nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), and tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]). Furthermore, Lb-EE markedly restored LPS-induced morphological changes in RAW264.7 cells to a normal morphology. HPLC analysis identified quercetin, luteolin, and kaempferol as bioactive components contained in Lb-EE. Mechanistic studies in LPS-stimulated RAW264.7 cells revealed that Lb-EE suppressed MyD88- and TRIF-induced NF-[Formula: see text]B transcriptional activation and the nuclear translocation of NF-[Formula: see text]B transcription factors. Moreover, Lb-EE inhibited IKK[Formula: see text]/[Formula: see text]-induced activation of the NF-[Formula: see text]B signaling pathway and IKK inhibition significantly reduced NO production in LPS-stimulated RAW264.7 cells. Taken together, these results suggest that Lb-EE plays an anti-inflammatory role by targeting IKK[Formula: see text]/[Formula: see text]-mediated activation of the NF-[Formula: see text]B signaling pathway during macrophage-mediated inflammatory responses.


PLoS ONE ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. e0230645 ◽  
Author(s):  
Khanutsanan Woranam ◽  
Gulsiri Senawong ◽  
Suppawit Utaiwat ◽  
Sirinda Yunchalard ◽  
Jintana Sattayasai ◽  
...  

KSBB Journal ◽  
2019 ◽  
Vol 34 (1) ◽  
pp. 31-37
Author(s):  
Min-Seon Kim ◽  
Jisung Lim ◽  
Taejin Park ◽  
Kwang-Wook Ko ◽  
Seung-Young Kim

2018 ◽  
Vol 11 (4) ◽  
pp. 1755-1761
Author(s):  
Eun-Jin Yang ◽  
Sungchan Jang ◽  
Kwang Hee Hyun ◽  
Eun-Young Jung ◽  
Seung-Young Kim ◽  
...  

The anti-inflammatory activity and non-toxicity of Sonchus oleraceus extract (J6) were tested by measuring its effect on the levels of nitric oxide (NO), prostaglandin E2 (PGE2), and the pro-inflammatory cytokines, interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. We treated the RAW264.7 cells with various concentrations (50, 100, or 200 μg/mL) of J6. Our results showed that J6 inhibited the production of NO, PGE2, and pro-inflammatory cytokines in a concentration-dependent manner, without compromising cell viability. In addition, we provided supporting evidence that the inhibitory activity of J6 on the production of NO and PGE2 occurred via the downregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively. Our findings suggest that J6 is a new source for anti-inflammatory drugs and ingredients for healthcare products that include functional cosmetics.


2020 ◽  
Vol 17 (2) ◽  
Author(s):  
Bo‐Bo Wang ◽  
Yang Gao ◽  
Li‐Ya Chen ◽  
Chang‐Long Zhang ◽  
Xiao‐Qing Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document