Compositional Variations of Apatite, Fractionation Trends, and A Pge-Bearing Zone In the Kivakka Layered Intrusion, Northern Karelia, Russia

2016 ◽  
Vol 54 (2) ◽  
pp. 475-490 ◽  
Author(s):  
Andrei Y. Barkov ◽  
Andrey A. Nikiforov
2021 ◽  
Vol 62 (03) ◽  
pp. 324-338
Author(s):  
A.Y. Barkov ◽  
R.F. Martin ◽  
A.E. Izokh ◽  
A.A. Nikiforov ◽  
V.N. Korolyuk

Abstract —The paper focuses on compositional variations of olivine and chromian spinel in the Monchepluton and Pados-Tundra layered intrusions, which host significant chromitite mineralization. Ore-bearing dunite (with up to 25–30 vol.% Mcr) in the Sopcheozerskoe chromite deposit from the Monchepluton complex, Kola Peninsula, Russia, bears an assemblage of phases with exceptionally high magnesium contents: Fo96 + augite (Mg# = 94) + magnesiochromite, Mcr (Mg# ≈ 65); Mg# = 100·Mg/(Mg + Fe2+ + Mn). However, olivine in the host dunite has normal maximum values of Mg# comparable to those in cumulus olivine from layered intrusions worldwide (Fo≤91–92). The Fo96 phase in the Sopcheozerskoe deposit shows the most primitive composition ever reported from any layered intrusion. Magnesiochromite occurs as unzoned homogeneous euhedral crystals unaffected by subsolidus exchange or metasomatic effects. Olivine in ore-bearing dunite (20–25 vol.% magnesian chromite) from the Pados-Tundra complex attains Fo93, with the Mg# value notably higher than the range (Fo85.5–90.6) in olivine from orthopyroxenite, harzburgite, and dunite within the intrusion. Olivine and chromian spinel in the two complexes behave coherently, with covarying patterns of Mg# and Ni contents in olivine at R = 0.75 (n = 160) and positive correlation between Mg# in coexisting chromian spinel and olivine grains at R = 0.8 (n = 150). This behavior indicates that the two phases attained equilibrium during crystallization. It appears unlikely that the extremely high Mg enrichment in olivine (Fo96), as well as in all associated phases of the Monchepluton complex, would result from a subsolidus reaction between olivine and chromian spinel or low-temperature alteration of olivine. We suggest a more realistic explanation that the olivine (+ high-Mg augite)–chromian spinel assemblage crystallized from komatiitic magma under the conditions of progressively increasing oxygen fugacity (fO2). The high Mg# in the Mcr-chromite-enriched system, above the maximum values common in cumulus olivine from layered intrusions (up to Fo96 against Fo≤91–92), may be caused by shortage of ferrous iron.


2021 ◽  
Vol 62 (4) ◽  
pp. 427-444
Author(s):  
A.Y. Barkov ◽  
E.V. Sharkov ◽  
A.A. Nikiforov ◽  
V.N. Korolyuk ◽  
S.A. Silyanov ◽  
...  

Abstract ––We have investigated the compositional variations of apatite (Ap) and rare-earth element (REE) minerals in the Monchepluton layered complex on the Kola Peninsula. On the basis of large sets of pertinent analytical data, we have estimated geochemical trends involving major, minor, and trace elements and studied their relation with the compositions of rock-forming silicate and oxide minerals. The variations observed in Ap differ considerably from trends reported for other layered intrusions. The composition fields of Ap are not consistent with the variations in the chemical composition of the bulk rocks and their constituent minerals, as determined along the representative cross sections of the entire complex. The compositional variations of Ap are fairly similar in all units of the complex. Chlorapatite (>6 wt.% Cl) is invariably abundant. There is no relationship between the Cl content of Ap and the degree of magnesium enrichment of the coexisting early magmatic silicates. In the F–Cl–OH diagram, broad fields of ternary solid solution are observed. There are no compositions along the Cl–F axis. The compositions of Ap are notably poor in Cl in the marginal series (the Nyud massif) and correspond to hydroxylapatite with a high content of fluorapatite component. Two composition fields of Ap are recognized in the Monchepluton complex: ≤3 wt.% and >6 wt.% Cl; there are, however, extensive overlaps. Two generations of apatite are thus implied. The first nucleated at the early stage of crystallization of H2O-bearing intercumulus melt as a result of substantial increase in the contents of P, F, Cl, and other incompatible components. The following stage of degassing of the crystallizing melt caused a decoupling of Cl and F. Fluorine remained mostly in the melt; in contrast, Cl was partitioned efficiently into an H2O-bearing fluid phase. At the early stage, the apatite incorporated combinations of hydroxylapatite and fluorapatite, with a low content of Cl. At the late stage, chlorapatite crystallized from a Cl-rich fluid, and ferrochloropargasite (4.1 wt.% Cl) formed in the Poaz massif as a result of autometasomatic alteration via reactions of this fluid with plagioclase and pyroxene. The apatite has high Sr contents (up to 4.1 wt.% SrO) in the highly magnesian cumulates of the Dunite block and the massifs of mounts Kumuzh’ya, Nittis, and Travyanaya. This enrichment illustrates the accumulation of Sr in the intercumulus melt, in which Ap was the only Sr-bearing phase in the absence or scarcity of intercumulus plagioclase. The REE contents also increased in the intercumulus melt and led to the formation of monazite-(Ce), REE-bearing Ap, and allanite-(Ce) in the remaining microvolumes of melt. Loveringite and Ap crystallized as coexisting phases in Mt. Sopcha. For the first time in a layered intrusion, an extensive range of compositions is documented in the Ce–La–Nd diagram for the REE-bearing phosphates (monazite and REE-rich apatite), which display a predominant La ↔ Nd substitution at the constant contents of Ce.


Author(s):  
M. Vallet-Regí ◽  
M. Parras ◽  
J.M. González-Calbet ◽  
J.C. Grenier

BaFeO3-y compositions (0.35<y<0.50) have been investigated by means of electron diffraction and microscopy to resolve contradictory results from powder X-ray diffraction data.The samples were obtained by annealing BaFeO2.56 for 48 h. in the temperature range from 980°C to 1050°C . Total iron and barium in the samples were determined using chemical analysis and gravimetric methods, respectively.In the BaFeO3-y system, according to the electron diffraction and microscopy results, the nonstoichiometry is accommodated in different ways as a function of the composition (y):In the domain between BaFeO2.5+δBaFeO2.54, compositional variations are accommodated through the formation of microdomains. Fig. la shows the ED pattern of the BaFeO2.52 material along thezone axis. The corresponding electron micrograph is seen in Fig. 1b. Several domains corresponding to the monoclinic BaFeO2.50 phase, intergrow with domains of the orthorhombic phase. According to that, the ED pattern of Fig. 1a, can be interpreted as formed by the superposition of three types of diffraction maxima : Very strong spots corresponding to a cubic perovskite, a set of maxima due to the superposition of three domains of the monoclinic phase along [100]m and a series of maxima corresponding to three domains corresponding to the orthorhombic phase along the [100]o.


Sign in / Sign up

Export Citation Format

Share Document