Spatial suppression due to statistical regularities in a visual detection task

Author(s):  
Dirk van Moorselaar ◽  
Jan Theeuwes

AbstractIncreasing evidence demonstrates that observers can learn the likely location of salient singleton distractors during visual search. To date, the reduced attentional capture at high-probability distractor locations has typically been examined using so called compound search, in which by design a target is always present. Here, we explored whether statistical distractor learning can also be observed in a visual detection task, in which participants respond target present if the singleton target is present and respond target absent when the singleton target is absent. If so, this allows us to examine suppression of the location that is likely to contain a distractor both in the presence, but critically also in the absence, of a priority signal generated by the target singleton. In an online variant of the additional singleton paradigm, observers had to indicate whether a unique shape was present or absent, while ignoring a colored singleton, which appeared with a higher probability in one specific location. We show that attentional capture was reduced, but not absent, at high-probability distractor locations, irrespective of whether the display contained a target or not. By contrast, target processing at the high-probability distractor location was selectively impaired on distractor-present displays. Moreover, all suppressive effects were characterized by a gradient such that suppression scaled with the distance to the high-probability distractor location. We conclude that statistical distractor learning can be examined in visual detection tasks, and discuss the implications for attentional suppression due to statistical learning.

2019 ◽  
Vol 27 (1) ◽  
pp. 86-95 ◽  
Author(s):  
Michel Failing ◽  
Jan Theeuwes

AbstractSalient yet irrelevant objects often interfere with daily tasks by capturing attention against our best interests and intentions. Recent research has shown that through implicit learning, distraction by a salient object can be reduced by suppressing the location where this distractor is likely to appear. Here, we investigated whether suppression of such high-probability distractor locations is an all-or-none phenomenon or specifically tuned to the degree of interference caused by the distractor. In two experiments, we varied the salience of two task-irrelevant singleton distractors each of which was more likely to appear in one specific location in the visual field. We show that the magnitude of interference by a distractor determines the magnitude of suppression for its high-probability location: The more salient a distractor, the more it becomes suppressed when appearing in its high-probability location. We conclude that distractor suppression emerges as a consequence of the spatial regularities regarding the location of a distractor as well as its potency to interfere with attentional selection.


2018 ◽  
Author(s):  
Michel Failing ◽  
Benchi Wang ◽  
Jan Theeuwes

Where and what we attend to is not only determined by what we are currently looking for but also by what we have encountered in the past. Recent studies suggest that biasing the probability by which distractors appear at locations in visual space may lead to attentional suppression of high probability distractor locations which effectively reduces capture by a distractor but also impairs target selection at this location. However, in many of these studies introducing a high probability distractor location was tantamount to increasing the probability of the target appearing in any of the other locations (i.e. the low probability distractor locations). Here, we investigate an alternative interpretation of previous findings according to which attentional selection at high probability distractor locations is not suppressed. Instead, selection at low probability distractor locations is facilitated. In two visual search tasks, we found no evidence for this hypothesis: neither when there was only a bias in target presentation but no bias in distractor presentation (Experiment 1), nor when there was only a bias in distractor presentation but no bias in target presentation (Experiment 2). We conclude that recurrent presentation of a distractor in a specific location leads to attentional suppression of that location through a mechanism that is unaffected by any regularities regarding the target location.


Author(s):  
Changrun Huang ◽  
Ana Vilotijević ◽  
Jan Theeuwes ◽  
Mieke Donk

AbstractIrrelevant salient objects may capture our attention and interfere with visual search. Recently, it was shown that distraction by a salient object is reduced when it is presented more frequently at one location than at other locations. The present study investigates whether this reduced distractor interference is the result of proactive spatial suppression, implemented prior to display onset, or reactive suppression, occurring after attention has been directed to that location. Participants were asked to search for a shape singleton in the presence of an irrelevant salient color singleton which was presented more often at one location (the high-probability location) than at all other locations (the low-probability locations). On some trials, instead of the search task, participants performed a probe task, in which they had to detect the offset of a probe dot. The results of the search task replicated previous findings showing reduced distractor interference in trials in which the salient distractor was presented at the high-probability location as compared with the low-probability locations. The probe task showed that reaction times were longer for probes presented at the high-probability location than at the low-probability locations. These results indicate that through statistical learning the location that is likely to contain a distractor is suppressed proactively (i.e., prior to display onset). It suggests that statistical learning modulates the first feed-forward sweep of information processing by deprioritizing locations that are likely to contain a distractor in the spatial priority map.


Author(s):  
Jasper de Waard ◽  
Louisa Bogaerts ◽  
Dirk van Moorselaar ◽  
Jan Theeuwes

AbstractThe present study investigates the flexibility of statistically learned distractor suppression between different contexts. Participants performed the additional singleton task searching for a unique shape, while ignoring a uniquely colored distractor. Crucially, we created two contexts within the experiments, and each context was assigned its own high-probability distractor location, so that the location where the distractor was most likely to appear depended on the context. Experiment 1 signified context through the color of the background. In Experiment 2, we aimed to more strongly differentiate between the contexts using an auditory or visual cue to indicate the upcoming context. In Experiment 3, context determined the appropriate response ensuring that participants engaged the context in order to be able to perform the task. Across all experiments, participants learned to suppress both high-probability locations, even if they were not aware of these spatial regularities. However, these suppression effects occurred independent of context, as the pattern of suppression reflected a de-prioritization of both high-probability locations which did not change with the context. We employed Bayesian analyses to statistically quantify the absence of context-dependent suppression effects. We conclude that statistically learned distractor suppression is robust and generalizes across contexts.


Author(s):  
Ana Franco ◽  
Julia Eberlen ◽  
Arnaud Destrebecqz ◽  
Axel Cleeremans ◽  
Julie Bertels

Abstract. The Rapid Serial Visual Presentation procedure is a method widely used in visual perception research. In this paper we propose an adaptation of this method which can be used with auditory material and enables assessment of statistical learning in speech segmentation. Adult participants were exposed to an artificial speech stream composed of statistically defined trisyllabic nonsense words. They were subsequently instructed to perform a detection task in a Rapid Serial Auditory Presentation (RSAP) stream in which they had to detect a syllable in a short speech stream. Results showed that reaction times varied as a function of the statistical predictability of the syllable: second and third syllables of each word were responded to faster than first syllables. This result suggests that the RSAP procedure provides a reliable and sensitive indirect measure of auditory statistical learning.


2020 ◽  
Author(s):  
Stephen Charles Van Hedger ◽  
Ingrid Johnsrude ◽  
Laura Batterink

Listeners are adept at extracting regularities from the environment, a process known as statistical learning (SL). SL has been generally assumed to be a form of “context-free” learning that occurs independently of prior knowledge, and SL experiments typically involve exposing participants to presumed novel regularities, such as repeating nonsense words. However, recent work has called this assumption into question, demonstrating that learners’ previous language experience can considerably influence SL performance. In the present experiment, we tested whether previous knowledge also shapes SL in a non-linguistic domain, using a paradigm that involves extracting regularities over tone sequences. Participants learned novel tone sequences, which consisted of pitch intervals not typically found in Western music. For one group of participants, the tone sequences used artificial, computerized instrument sounds. For the other group, the same tone sequences used familiar instrument sounds (piano or violin). Knowledge of the statistical regularities was assessed using both trained sounds (measuring specific learning) and sounds that differed in pitch range and/or instrument (measuring transfer learning). In a follow-up experiment, two additional testing sessions were administered to gauge retention of learning (one day and approximately one-week post-training). Compared to artificial instruments, training on sequences played by familiar instruments resulted in reduced correlations among test items, reflecting more idiosyncratic performance. Across all three testing sessions, learning of novel regularities presented with familiar instruments was worse compared to unfamiliar instruments, suggesting that prior exposure to music produced by familiar instruments interfered with new sequence learning. Overall, these results demonstrate that real-world experience influences SL in a non-linguistic domain, supporting the view that SL involves the continuous updating of existing representations, rather than the establishment of entirely novel ones.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chloé Stengel ◽  
Marine Vernet ◽  
Julià L. Amengual ◽  
Antoni Valero-Cabré

AbstractCorrelational evidence in non-human primates has reported increases of fronto-parietal high-beta (22–30 Hz) synchrony during the top-down allocation of visuo-spatial attention. But may inter-regional synchronization at this specific frequency band provide a causal mechanism by which top-down attentional processes facilitate conscious visual perception? To address this question, we analyzed electroencephalographic (EEG) signals from a group of healthy participants who performed a conscious visual detection task while we delivered brief (4 pulses) rhythmic (30 Hz) or random bursts of Transcranial Magnetic Stimulation (TMS) to the right Frontal Eye Field (FEF) prior to the onset of a lateralized target. We report increases of inter-regional synchronization in the high-beta band (25–35 Hz) between the electrode closest to the stimulated region (the right FEF) and right parietal EEG leads, and increases of local inter-trial coherence within the same frequency band over bilateral parietal EEG contacts, both driven by rhythmic but not random TMS patterns. Such increases were accompained by improvements of conscious visual sensitivity for left visual targets in the rhythmic but not the random TMS condition. These outcomes suggest that high-beta inter-regional synchrony can be modulated non-invasively and that high-beta oscillatory activity across the right dorsal fronto-parietal network may contribute to the facilitation of conscious visual perception. Our work supports future applications of non-invasive brain stimulation to restore impaired visually-guided behaviors by operating on top-down attentional modulatory mechanisms.


Author(s):  
Dirk Kerzel ◽  
Stanislas Huynh Cong

AbstractVisual search may be disrupted by the presentation of salient, but irrelevant stimuli. To reduce the impact of salient distractors, attention may suppress their processing below baseline level. While there are many studies on the attentional suppression of distractors with features distinct from the target (e.g., a color distractor with a shape target), there is little and inconsistent evidence for attentional suppression with distractors sharing the target feature. In this study, distractor and target were temporally separated in a cue–target paradigm, where the cue was shown briefly before the target display. With target-matching cues, RTs were shorter when the cue appeared at the target location (valid cues) compared with when it appeared at a nontarget location (invalid cues). To induce attentional suppression, we presented the cue more frequently at one out of four possible target positions. We found that invalid cues appearing at the high-frequency cue position produced less interference than invalid cues appearing at a low-frequency cue position. Crucially, target processing was also impaired at the high-frequency cue position, providing strong evidence for attentional suppression of the cued location. Overall, attentional suppression of the frequent distractor location could be established through feature-based attention, suggesting that feature-based attention may guide attentional suppression just as it guides attentional enhancement.


Author(s):  
Michael L. Matthews ◽  
Robert G. Angus ◽  
Douglas G. Pearce

When a visual detection task is performed with distant targets in the absence of adequate accommodative cues, a performance loss is obtained which has been attributed to empty field myopia. It is shown that in a visual search situation an accommodative aid located at optical infinity improves detection by approximately 30% over empty field performance. It is further demonstrated that such an aid may overcome the conflicting accommodative cues provided by proximal contours defining the search area, i.e., a situation that is analogous to the detection of distant targets by observers searching through aircraft cabin windows.


Sign in / Sign up

Export Citation Format

Share Document