target display
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 8)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Christian Büsel ◽  
Christian Valuch ◽  
Harald R. Bliem ◽  
Pierre Sachse ◽  
Ulrich Ansorge

Abstract. In spatial cueing, cues presented at target position (valid condition) can capture visual attention and facilitate responses to the target relative to cues presented away from target position (invalid condition). If cues and targets carry different features, the necessary updating of the object representation from the cue to the target display sometimes counteracts and even reverses facilitation in valid conditions, resulting in an inverted validity effect. Previous studies reached partly divergent conclusions regarding the conditions under which object-file updating occurs, and little is known about the exact nature of the processes involved. Object-file updating has so far been investigated by manipulating cue–target similarities in task-relevant target features, but other features that change between the cue and target displays might also contribute to object-file updating. This study examined the conditions under which object-file updating could counteract validity effects by systematically varying task-relevant (color), response-relevant (identity), and response-irrelevant (orientation) features between cue and target displays. The results illustrate that object-file updating is largely restricted to task-relevant features. In addition, the difficulty of the search task affects the degree to which object-file updating costs interact with spatial cueing.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11610
Author(s):  
Paul C. Knox ◽  
Dongmei Liang

Considerable effort has been made to measure and understand the effects of ageing on inhibitory control using a range of behavioural tasks. In the minimally delayed oculomotor response (MDOR) task, participants are presented with a simple visual target step with variable target display duration (TDD), and instructed to saccade to the target not when it appears (a prosaccade response), but when it disappears (i.e., on target offset). Using this task, we recently found higher error rates and longer latencies for correct responses in older compared to younger participants. Here we have used a modified MDOR task, in which participants were presented with static placeholders identifying potential target positions (increasing spatial information), and three TDDs rather than two (reducing temporal predictability). We found that the yield of analysable trials was generally higher with this modified task and in 28 older (mean ± SD age: 65 ± 7 y) and 25 younger (26 ± 7 y) participants the total overall error rate was again higher in the older group (30 ± 18% vs. 16 ± 11%). An analysis of the temporal distribution of responses demonstrated a pronounced peak in error production around 150 ms (young) or 200 ms (old) after target onset. When we recalculated the error rate focusing on these errors, it was again significantly higher in the older group. The latency of correct responses (to offsets) was significantly increased in the older group, although much of this increase was accounted for by expected age-related visuomotor slowing. However, both latency and distribution data suggested that while older participants could generate increased levels of inhibition, they could not maintain these levels as efficiently as the younger participants. In 24 participants (15 old, 9 young) who completed both versions of the MDOR task, neither latency nor error rates differed significantly between versions. These results confirm an inhibitory control deficit in healthy older participants, and suggest that the dynamics of inhibitory control are also affected by ageing. The modified MDOR task yields more data while not altering basic performance parameters.


Author(s):  
Moritz Stolte ◽  
Ulrich Ansorge

AbstractVisual motion captures attention, but little is known about the automaticity of these effects. Here, we tested if deviant flicker frequencies, as one form of motion, automatically capture attention. Observers searched for a vertical target among tilted distractors. Prior to the target display, a cue array of sinusoidally modulating (flickering) annuli, each surrounding one location of the subsequent target(-plus-distractors) display was presented for variable durations. Annuli either flickered all at 1 Hz (neutral condition, no-singleton cue), or a single annulus flickered at a unique frequency of 5 Hz, 10 Hz, or 15 Hz. The location of this singleton-frequency cue was uncorrelated with target location. Thus, we could measure benefits (target at cued location) and costs (target ≠ cued location) for cues of different frequencies and durations. The results showed that deviant flicker frequencies capture attention, as we observed benefits and costs, falsifying that nonspatial filtering accounted for the cueing effect. In line with automatic capture, cueing was effective in singleton (Experiment 1) and nonsingleton search tasks (Experiment 2), and is thus not dependent on (“top-down”) singleton detection mode. Moreover, analysis of results ruled out trial-by-trial “swapping” of flicker frequencies from preceding target to subsequent distractor locations. Results also revealed increasing cueing effects with higher cue flicker frequency and longer duration. This indicates a significantly longer period of automatic capture by sinusoidal flicker than the typical inhibition of return observed around 250 ms after the onset of uninformative static or single-transient cues.


Author(s):  
Dirk Kerzel ◽  
Stanislas Huynh Cong

AbstractVisual search may be disrupted by the presentation of salient, but irrelevant stimuli. To reduce the impact of salient distractors, attention may suppress their processing below baseline level. While there are many studies on the attentional suppression of distractors with features distinct from the target (e.g., a color distractor with a shape target), there is little and inconsistent evidence for attentional suppression with distractors sharing the target feature. In this study, distractor and target were temporally separated in a cue–target paradigm, where the cue was shown briefly before the target display. With target-matching cues, RTs were shorter when the cue appeared at the target location (valid cues) compared with when it appeared at a nontarget location (invalid cues). To induce attentional suppression, we presented the cue more frequently at one out of four possible target positions. We found that invalid cues appearing at the high-frequency cue position produced less interference than invalid cues appearing at a low-frequency cue position. Crucially, target processing was also impaired at the high-frequency cue position, providing strong evidence for attentional suppression of the cued location. Overall, attentional suppression of the frequent distractor location could be established through feature-based attention, suggesting that feature-based attention may guide attentional suppression just as it guides attentional enhancement.


Author(s):  
Nicole A. Aponte-Santiago ◽  
Kiel G. Ormerod ◽  
Yulia Akbergenova ◽  
J. Troy Littleton

AbstractStructural and functional plasticity induced by neuronal competition is a common feature of developing nervous systems. However, the rules governing how postsynaptic cells differentiate between presynaptic inputs are unclear. In this study we characterized synaptic interactions following manipulations of Ib tonic or Is phasic glutamatergic motoneurons that co-innervate postsynaptic muscles at Drosophila neuromuscular junctions (NMJs). After identifying drivers for each neuronal subtype, we performed ablation or genetic manipulations to alter neuronal activity and examined the effects on synaptic innervation and function. Ablation of either Ib or Is resulted in decreased muscle response, with some functional compensation occurring in the tonic Ib input when Is was missing. In contrast, the phasic Is terminal failed to show functional or structural changes following loss of the co-innervating Ib input. Decreasing the activity of the Ib or Is neuron with tetanus toxin light chain resulted in structural changes in muscle innervation. Decreased Ib activity resulted in reduced active zone (AZ) number and decreased postsynaptic subsynaptic reticulum (SSR) volume, with the emergence of filopodial-like protrusions from synaptic boutons of the Ib input. Decreased Is activity did not induce structural changes at its own synapses, but the co-innervating Ib motoneuron increased the number of synaptic boutons and AZs it formed. These findings indicate tonic and phasic neurons respond independently to changes in activity, with either functional or structural alterations in the tonic motoneuron occurring following ablation or reduced activity of the co-innervating phasic input, respectively.Significance StatementBoth invertebrate and vertebrate nervous systems display synaptic plasticity in response to behavioral experiences, indicating underlying mechanisms emerged early in evolution. How specific neuronal classes innervating the same postsynaptic target display distinct types of plasticity is unclear. Here, we examined if Drosophila tonic Ib and phasic Is motoneurons display competitive or cooperative interactions during innervation of the same muscle, or compensatory changes when the output of one motoneuron is altered. We established a system to differentially manipulate the motoneurons and examined the effects of cell-type specific changes to one of the inputs. Our findings indicate Ib and Is motoneurons respond differently to activity mismatch or loss of the co-innervating input, with the tonic subclass responding robustly compared to phasic motoneurons.


Author(s):  
Valerie Betting ◽  
Joep Joosten ◽  
Rebecca Halbach ◽  
Melissa Thaler ◽  
Pascal Miesen ◽  
...  

ABSTRACTPIWI-interacting (pi)RNAs are small silencing RNAs that are crucial for the defense against transposable elements in germline tissues of animals. In the mosquito Aedes aegypti, the piRNA pathway also contributes to gene regulation in somatic tissues, illustrating additional roles for piRNAs and PIWI proteins besides transposon repression. Here, we identify a highly abundant, endogenous piRNA (propiR1) that associates with both Piwi4 and Piwi5. PropiR1-mediated target silencing requires base pairing in the seed region with supplemental base pairing at the piRNA 3’ end. Yet, propiR1 strongly represses a single target, the lncRNA AAEL027353 (lnc027353). Slicing of this target initiates the production of responder and trailer piRNAs from the 3’ cleavage fragment. Expression of propiR1 commences early during embryonic development and mediates degradation of maternally provided lnc027353. Both propiR1 and its lncRNA target display a high degree of sequence conservation in the closely related Aedes albopictus, underscoring the importance of this regulatory network for mosquito development.


2020 ◽  
Vol 32 (2) ◽  
pp. 272-282
Author(s):  
Tobias Feldmann-Wüstefeld ◽  
Edward Awh

Voluntary control over spatial attention has been likened to the operation of a zoom lens, such that processing quality declines as the size of the attended region increases, with a gradient of performance that peaks at the center of the selected area. Although concurrent changes in activity in visual regions suggest that zoom lens adjustments influence perceptual stages of processing, extant work has not distinguished between changes in the spatial selectivity of attention-driven neural activity and baseline shift of activity that can increase mean levels of activity without changes in selectivity. Here, we distinguished between these alternatives by measuring EEG activity in humans to track preparatory changes in alpha activity that indexed the precise topography of attention across the possible target positions. We observed increased spatial selectivity in alpha activity when observers voluntarily directed attention toward a narrower region of space, a pattern that was mirrored in target discrimination accuracy. Thus, alpha activity tracks both the centroid and spatial extent of covert spatial attention before the onset of the target display, lending support to the hypothesis that narrowing the zoom lens of attention shapes the initial encoding of sensory information.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8401
Author(s):  
Paul C. Knox ◽  
Nikitha Pasunuru

Healthy, older adults are widely reported to experience cognitive decline, including impairments in inhibitory control. However, this general proposition has recently come under scrutiny because ageing effects are highly variable between individuals, are task dependent, and are sometimes not distinguished from general age-related slowing. We recently developed the minimally delayed oculomotor response (MDOR) task in which participants are presented with a simple visual target step, and instructed to saccade not to the target when it appears (a prosaccade response), but when it disappears (i.e. on target offset). Varying the target display duration (TDD) prevents offset timing being predictable from the time of target onset, and saccades prior to the offset are counted as errors. A comparison of MDOR task performance in a group of 22 older adults (mean age 62 years, range 50–72 years) with that in a group of 39 younger adults (22 years, range 19–27 years) demonstrated that MDOR latency was significantly increased in the older group by 34–68 ms depending on TDD. However, when MDOR latencies were corrected by subtracting the latency observed in a standard prosaccade task, the latency difference between groups was abolished. There was a larger latency modulation with TDD in the older group which was observed even when their generally longer latencies were taken into account. Error rates were significantly increased in the older group. An analysis of the timing distribution of errors demonstrated that most errors were failures to inhibit responses to target onsets. When error distributions were used to isolate clear inhibition failures from other types of error, the older group still exhibited significantly higher error rates as well as a higher residual error rate. Although MDOR latency in older participants may largely reflect a general slowing in the oculomotor system with age, both the latency modulation and error rate results are consistent with an age-related inhibitory control deficit. How this relates to performance on other inhibitory control tasks remains to be investigated.


2017 ◽  
Vol 29 (7) ◽  
pp. 1194-1211 ◽  
Author(s):  
Patricia F. Sayegh ◽  
Diana J. Gorbet ◽  
Kara M. Hawkins ◽  
Kari L. Hoffman ◽  
Lauren E. Sergio

Our brain's ability to flexibly control the communication between the eyes and the hand allows for our successful interaction with the objects located within our environment. This flexibility has been observed in the pattern of neural responses within key regions of the frontoparietal reach network. More specifically, our group has shown how single-unit and oscillatory activity within the dorsal premotor cortex (PMd) and the superior parietal lobule (SPL) change contingent on the level of visuomotor compatibility between the eyes and hand. Reaches that involve a coupling between the eyes and hand toward a common spatial target display a pattern of neural responses that differ from reaches that require eye–hand decoupling. Although previous work examined the altered spiking and oscillatory activity that occurs during different types of eye–hand compatibilities, they did not address how each of these measures of neurological activity interacts with one another. Thus, in an effort to fully characterize the relationship between oscillatory and single-unit activity during different types of eye–hand coordination, we measured the spike–field coherence (SFC) within regions of macaque SPL and PMd. We observed stronger SFC within PMdr and superficial regions of SPL (areas 5/PEc) during decoupled reaches, whereas PMdc and regions within SPL surrounding medial intrapareital sulcus had stronger SFC during coupled reaches. These results were supported by meta-analysis on human fMRI data. Our results support the proposal of altered cortical control during complex eye–hand coordination and highlight the necessity to account for the different eye–hand compatibilities in motor control research.


Sign in / Sign up

Export Citation Format

Share Document