scholarly journals Creation of the calcium-phosphate bone cement composite containing calcium sulphate granules: the influence of the composition, size, porosity of granules on the phase composition, microstructure, mechanical and biological properties.

2020 ◽  
Vol 11 (3-2020) ◽  
pp. 204-209
Author(s):  
D. R. Khayrutdinova ◽  
◽  
O. S. Antonova ◽  
M. A. Golgberg ◽  
S. V. Smirnov ◽  
...  

Composite cements based on the tricalcium phosphate (TCP) —calcium sulfate (CS) system were synthesized and investigated. The second component which were introduced into the cement paste (TCP) in the form of modified carbonate anion granules is the calcium sulfate. As a result, new composite cement materials based on the tricalcium phosphate —carbonate —substituted calcium sulfate (granules) system can find their application in regenerative medicine due to the possibility of pore space formation in vivo.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nan Jiang ◽  
Devendra H. Dusane ◽  
Jacob R. Brooks ◽  
Craig P. Delury ◽  
Sean S. Aiken ◽  
...  

AbstractThis study investigated the efficacy of a biphasic synthetic β-tricalcium phosphate/calcium sulfate (β-TCP/CS) bone graft substitute for compatibility with vancomycin (V) in combination with tobramycin (T) or gentamicin (G) evidenced by the duration of potency and the prevention and killing efficacies of P. aeruginosa (PAO1) and S. aureus (SAP231) biofilms in in vitro assays. Antibiotic loaded β-TCP/CS beads were compared with antibiotic loaded beads formed from a well characterized synthetic calcium sulfate (CS) bone void filler. β-TCP/CS antibiotic loaded showed antimicrobial potency against PAO1 in a repeated Kirby-Bauer like zone of inhibition assay for 6 days compared to 8 days for CS. However, both bead types showed potency against SAP231 for 40 days. Both formulations loaded with V + T completely prevented biofilm formation (CFU below detection limits) for the 3 days of the experiment with daily fresh inoculum challenges (P < 0.001). In addition, both antibiotic loaded materials and antibiotic combinations significantly reduced the bioburden of pre-grown biofilms by between 3 and 5 logs (P < 0.001) with V + G performing slightly better against PAO1 than V + T. Our data, combined with previous data on osteogenesis suggest that antibiotic loaded β-TCP/CS may have potential to stimulate osteogenesis through acting as a scaffold as well as simultaneously protecting against biofilm infection. Future in vivo experiments and clinical investigations are warranted to more comprehensively evaluate the use of β-TCP/CS in the management of orthopaedic infections.


2010 ◽  
Vol 6 (2) ◽  
pp. 607-616 ◽  
Author(s):  
M.D. Vlad ◽  
E.V. Şindilar ◽  
M.L. Mariñoso ◽  
I. Poeată ◽  
R. Torres ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaojie Lian ◽  
Kezheng Mao ◽  
Xi Liu ◽  
Xiumei Wang ◽  
Fuzhai Cui

A novel antibacterial bone graft substitute was developed to repair bone defects and to inhibit related infections simultaneously. This bone composite was prepared by introducing vancomycin (VCM) to nanohydroxyapatite/collagen/calcium sulphate hemihydrate (nHAC/CSH). XRD, SEM, and CCK-8 tests were used to characterize the structure and morphology and to investigate the adhesion and proliferation of murine osteoblastic MC3T3-E1 cell on VCM/nHAC/CSH composite. The effectiveness in restoring infectious bone defects was evaluatedin vivousing a rabbit model of chronic osteomyelitis. Ourin vivoresults implied that the VCM/nHAC/CSH composite performed well both in antibacterial ability and in bone regeneration. This novel bone graft substitute should be very promising for the treatment of bone defect-related infection in orthopedic surgeries.


Author(s):  
National Research Mamonov ◽  
National Research Chemis ◽  
National Research Drize ◽  
National Research Proskurina ◽  
I. I. Kryazhkov ◽  
...  

Results of experimental morphologic study of tricomponent resorbable calcium phosphate bone cement (CPhC), based on tricalcium phosphate for the filling of defect as a temporary bearing resorbable matrix are presented. Study was performed on soviet chinchilla rabbits weighting 3200-3500 g. The model of critical spongy bone defect was used. At different observation terms (6, 9 and 12 months) gradual substitution of biomaterial with newly formed bone tissue from periphery to the center was observed with complete cement resorption 12 months after surgery. By mechanic characteristics newly formed bone in the defect was stronger than the surrounding trabecular one. It was stated that material possessed hemostatic effect and moderate toxicity. Peripheral bone marrow maintained its cellularity at all terms, gradually filling intertrabecular space of newly formed bone. Achieved data enable to recommend wide used of CPhC for bone defects substitution.


2014 ◽  
Vol 21 (1) ◽  
pp. 72-77
Author(s):  
National Research Center for Hematology, Moscow, RF Mamonov ◽  
National Research Center for Hematology, Moscow, RF Chemis ◽  
National Research Center for Hematology, Moscow, RF Drize ◽  
National Research Center for Hematology, Moscow, RF Proskurina ◽  
I. I Kryazhkov ◽  
...  

Results of experimental morphologic study of tricomponent resorbable calcium phosphate bone cement (CPhC), based on tricalcium phosphate for the filling of defect as a temporary bearing resorbable matrix are presented. Study was performed on soviet chinchilla rabbits weighting 3200-3500 g. The model of critical spongy bone defect was used. At different observation terms (6, 9 and 12 months) gradual substitution of biomaterial with newly formed bone tissue from periphery to the center was observed with complete cement resorption 12 months after surgery. By mechanic characteristics newly formed bone in the defect was stronger than the surrounding trabecular one. It was stated that material possessed hemostatic effect and moderate toxicity. Peripheral bone marrow maintained its cellularity at all terms, gradually filling intertrabecular space of newly formed bone. Achieved data enable to recommend wide used of CPhC for bone defects substitution.


Author(s):  
K. A. Egiazaryan ◽  
G. D. Lazishvili ◽  
K. I. Akmataliev ◽  
A. P. Ettinger ◽  
A. P. Rat’Ev ◽  
...  

Purpose. To determine the optimum osteoplastic material for activation of reparative osteogenesis and substitution of traumatic defects in metaepiphyseal spongy bone tissue.Material and methods.Comparative experimental morphological study was performed on 12 matured male Chinchilla rabbits with body weight 2500-2800g. A model of critical defects of spongy bone tissue was used. Bone defects were filled with 3 types of osteoplastic material: composite calcium sulphate bone cement; xenogenous hydroxyapatite-based material with granulated paste of synthetic peptides (P-15); β-tricalcium phosphate-based material with gauging liquid (calcium phosphate bone cement).Results.Implantation of calcium sulphate bone cement showed rapid osteogenesis stimulation at terms 1.5 months and reduction of newly formed bone tissue mass by 3rd month due to active resorption of the residual material. Implantation of hydroxyapatite-based material with P-15 resulted in osteogenesis stimulation on its surface however because of its mechanical instability and absence of active resorption of that material only a moderate formation of bone trabeculae was observed. At implantation of β-tricalcium phosphate-based material an active resorption of osteoplastic material, formation of trabecular system and its reorganization into trabecular network of femoral metaepiphyseal spongy bone accompanied by the formation of mature bone trabeculae was noted by month 3.Conclusion. Mechanical stability of osteoplastic material and subsequent gradual resorption as well as formation of mature bine trabeculae indicates the efficacy of β-tricalcium phosphate-based material.


Author(s):  
Qiuju Miao ◽  
Nan Jiang ◽  
Qinmeng Yang ◽  
Ismail mohamed Hussein ◽  
Zhen Luo ◽  
...  

Abstract Various requirements for the repair of complex bone defects have motivated to development of scaffolds with adjustable degradation rates and biological functions. Tricalcium phosphate and calcium sulfate are the most commonly used bone repair materials in the clinic, how to better combine tricalcium phosphate and calcium sulfate and play their greatest advantages in the repair of osteoporotic bone defect is the focus of our research. In this study, a series of scaffolds with multistage-controlled degradation properties composed of strontium-doped calcium sulfate (SrCSH) and strontium-doped tricalcium phosphate microspheres (Sr-TCP) scaffolds were prepared, and their osteogenic activity, in vivo degradation and bone regeneration ability in tibia of osteoporotic rats were evaluated. In vitro studies revealed that different components of SrCSH/Sr-TCP scaffolds significantly promoted the proliferation and differentiation of MC3T3-E1 cells, which showed a good osteogenic induction activity. In vivo degradation results showed that the degradation time of composite scaffolds could be controlled in a large range (6-12 months) by controlling the porosity and phase composition of Sr-TCP microspheres. The results of osteoporotic femoral defect repair showed that when the degradation rate of scaffold matched with the growth rate of new bone, the parameters such as BMD, BV/TV, Tb.Th, angiogenesis marker CD31 and new bone formation marker OCN expression were higher, which promoted the rapid repair of osteoporotic bone defects. On the contrary, the slow degradation rate of scaffolds hindered the growth of new bone to a certain extent. This study elucidates the importance of the degradation rate of scaffolds for the repair of osteoporotic bone defects, and the design considerations can be extended to other bone repair materials, which is expected to provide new ideas for the development of tissue engineering materials in the future.


2017 ◽  
Vol 24 (2) ◽  
pp. 40-47
Author(s):  
K. A Egiazaryan ◽  
G. D Lazishvili ◽  
K. I Akmataliev ◽  
A. P Ettinger ◽  
A. P Rat’ev ◽  
...  

Purpose. To determine the optimum osteoplastic material for activation of reparative osteogenesis and substitution of traumatic defects in metaepiphyseal spongy bone tissue. Material and methods. Comparative experimental morphological study was performed on 12 matured male Chinchilla rabbits with body weight 2500-2800g. A model of critical defects of spongy bone tissue was used. Bone defects were filled with 3 types of osteoplastic material: composite calcium sulphate bone cement; xenogenous hydroxyapatite-based material with granulated paste of synthetic peptides (P-15); β-tricalcium phosphate-based material with gauging liquid (calcium phosphate bone cement). Results. Implantation of calcium sulphate bone cement showed rapid osteogenesis stimulation at terms 1.5 months and reduction of newly formed bone tissue mass by 3rd month due to active resorption of the residual material. Implantation of hydroxyapatite-based material with P-15 resulted in osteogenesis stimulation on its surface however because of its mechanical instability and absence of active resorption of that material only a moderate formation of bone trabeculae was observed. At implantation of β-tricalcium phosphate-based material an active resorption of osteoplastic material, formation of trabecular system and its reorganization into trabecular network of femoral metaepiphyseal spongy bone accompanied by the formation of mature bone trabeculae was noted by month 3. Conclusion. Mechanical stability of osteoplastic material and subsequent gradual resorption as well as formation of mature bine trabeculae indicates the efficacy of β-tricalcium phosphate-based material.


Sign in / Sign up

Export Citation Format

Share Document