Effects of tricalcium silicate/sodium alginate/calcium sulfate hemihydrate composite cements on osteogenic performances in vitro and in vivo

2020 ◽  
Vol 34 (10) ◽  
pp. 1422-1436 ◽  
Author(s):  
Mizhi Ji ◽  
Hong Chen ◽  
Yonggang Yan ◽  
Zhengwen Ding ◽  
Haohao Ren ◽  
...  
PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241718
Author(s):  
Marine Traverson ◽  
Connor E. Stewart ◽  
Mark G. Papich

The objectives of this study were to evaluate a novel kit of resorbable calcium sulfate beads marketed specifically for use in veterinary medicine and generally used for local delivery of antimicrobials as carboplatin-delivery system. The study characterized the elution of carboplatin in vitro, and investigated whether the initial dose and formulation of carboplatin, or the bead size significantly influences carboplatin elution in vitro. Calcium sulfate hemihydrate beads of 3- and 5-mm diameter were prepared. Five doses and two formulations of carboplatin (20, 50, 100, and 500 mg carboplatin per kit in powder formulation; 20 mg in liquid formulation) were tested in triplicates for each diameter beads. Beads were placed in 37°C phosphate buffered saline for 72 hours. Carboplatin concentrations in the eluent were measured by high-performance liquid chromatography at 11 time points with a modified United States Pharmacopeia assay. Concentrations of carboplatin in the eluent proportionally increased with the initial dose and peaked between 13 and 52 hours, ranging from 42.1% to 79.3% of the incorporated load. Higher peak concentrations, percentages released, and elution rates were observed with the liquid formulation and with higher carboplatin doses. There was no significant difference in maximum carboplatin concentrations between 3- and 5-mm diameter beads, but 5-mm diameter beads had slower elution rates. The novel kit can be used for preparation of carboplatin-impregnated resorbable calcium sulfate beads at variable doses, sizes and formulations. Further study is warranted to define the in vivo requirements and effective carboplatin dose, spatial diffusion and desired duration of elution.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2137
Author(s):  
Lubomir Medvecky ◽  
Maria Giretova ◽  
Radoslava Stulajterova ◽  
Lenka Luptakova ◽  
Tibor Sopcak

A modified one-step process was used to prepare tetracalcium phosphate/monetite/calcium sulfate hemihydrate powder cement mixtures (CAS). The procedure allowed the formation of monetite and calcium sulfate hemihydrate (CSH) in the form of nanoparticles. It was hypothesized that the presence of nanoCSH in small amounts enhances the in vitro bioactivity of CAS cement in relation to osteogenic gene markers in mesenchymal stem cells (MSCs). The CAS powder mixtures with 15 and 5 wt.% CSH were prepared by milling powder tetracalcium phosphate in an ethanolic solution of both orthophosphoric and sulfuric acids. The CAS cements had short setting times (around 5 min). The fast setting of the cement samples after the addition of the liquid component (water solution of NaH2PO4) was due to the partial formation of calcium sulfate dihydrate and hydroxyapatite before soaking in SBF with a small change in the original phase composition in cement powder samples after milling. Nanocrystalline hydroxyapatite biocement was produced by soaking of cement samples after setting in simulated body fluid (SBF). The fast release of calcium ions from CAS5 cement, as well as a small rise in the pH of SBF during soaking, were demonstrated. After soaking in SBF for 7 days, the final product of the cement transformation was nanocrystalline hydroxyapatite. The compressive strength of the cement samples (up to 30 MPa) after soaking in simulated body fluid (SBF) was comparable to that of bone. Real time polymerase chain reaction (RT-PCR) analysis revealed statistically significant higher gene expressions of alkaline phosphatase (ALP), osteonectin (ON) and osteopontin (OP) in cells cultured for 14 days in CAS5 extract compared to CSH-free cement. The addition of a small amount of nanoCSH (5 wt.%) to the tetracalcium phosphate (TTCP)/monetite cement mixture significantly promoted the over expression of osteogenic markers in MSCs. The prepared CAS powder mixture with its enhanced bioactivity can be used for bone defect treatment and has good potential for bone healing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nan Jiang ◽  
Devendra H. Dusane ◽  
Jacob R. Brooks ◽  
Craig P. Delury ◽  
Sean S. Aiken ◽  
...  

AbstractThis study investigated the efficacy of a biphasic synthetic β-tricalcium phosphate/calcium sulfate (β-TCP/CS) bone graft substitute for compatibility with vancomycin (V) in combination with tobramycin (T) or gentamicin (G) evidenced by the duration of potency and the prevention and killing efficacies of P. aeruginosa (PAO1) and S. aureus (SAP231) biofilms in in vitro assays. Antibiotic loaded β-TCP/CS beads were compared with antibiotic loaded beads formed from a well characterized synthetic calcium sulfate (CS) bone void filler. β-TCP/CS antibiotic loaded showed antimicrobial potency against PAO1 in a repeated Kirby-Bauer like zone of inhibition assay for 6 days compared to 8 days for CS. However, both bead types showed potency against SAP231 for 40 days. Both formulations loaded with V + T completely prevented biofilm formation (CFU below detection limits) for the 3 days of the experiment with daily fresh inoculum challenges (P < 0.001). In addition, both antibiotic loaded materials and antibiotic combinations significantly reduced the bioburden of pre-grown biofilms by between 3 and 5 logs (P < 0.001) with V + G performing slightly better against PAO1 than V + T. Our data, combined with previous data on osteogenesis suggest that antibiotic loaded β-TCP/CS may have potential to stimulate osteogenesis through acting as a scaffold as well as simultaneously protecting against biofilm infection. Future in vivo experiments and clinical investigations are warranted to more comprehensively evaluate the use of β-TCP/CS in the management of orthopaedic infections.


2021 ◽  
Vol 11 (9) ◽  
pp. 1497-1504
Author(s):  
Jinlong Liu ◽  
Yicai Zhang ◽  
Lin Qiu ◽  
Yujuan Zhang ◽  
Bin Gao

The material properties of nanocellulose (NC) can effectively enhance the structural stability of composite materials. However, the research related to NC/α-calcium sulfate hemihydrate (CSH) composites is largely lacking. In this paper, we explore the combination of these two materials and determine their elaborate biological activities in vivo. Using α-CSH as the matrix, the composite bone graft materials were produced according to different proportions of NC. Then the mechanical strength of the composite bone graft was measured, and the results were analyzed by X-ray diffraction and scanning electron microscopy (SEM). To conduct the material in vivo evaluation, 0% (CN0) and 0.75% (CN0.75) NC/α-CSH composite bone graft materials were implanted into a femoral condyle defect model. The results indicated that NC could significantly enhance the mechanical properties of α-CSH. The SEM analysis indicated that the NC shuttled between the crystal gaps and formed a three-dimensional network structure, which was firmly combined with the crystal structure. Meanwhile, the CN0.75 scaffold remained at 12 weeks postoperation, which provided a long-term framework for new bone formation. Overall, our findings demonstrate that, with a 0.75% NC/α-CSH composite demonstrating good potential as a bone graft material for clinical bone grafting.


2015 ◽  
Vol 15 (01) ◽  
pp. 1550012
Author(s):  
YANG ZHANG ◽  
RENJIE WU ◽  
YING HU ◽  
YU DONG ◽  
LIFENG SHEN ◽  
...  

Background: Antibiotic-impregnated calcium sulfate delivery systems (ACDS) are commonly used to treat chronic osteomyelitis. Our research is to investigate drug release in vitro over a longer period, as a cautious predictor of in vivo release. Methods: The local release behavior of antibiotic in vitro was simulated. The consecutive dynamic eluting experiment was performed based on the pro-operative characteristic of osteomyelitis patients and the determined results of drug concentration in the human drainage tissue fluid (DTF). The concentration of each drug in the receiving solution was detected by ultra-performance liquid chromatography-tandem quadrupole detector mass spectrometry. The ACDS was reviewed by scanning electronic microscopy (SEM) after 48 h, and prepared to be eluted for another examination after 33 days. The mechanism of antibiotic release was analyzed by using the Ritger–Peppas and Weibull equations. Results: The cumulative release rate of vancomycin in a vancomycin-calcium sulfate delivery system (VCDS) was 77.50 % (3.0 mm diameter) and 72.43 % (4.8 mm diameter), while that of the tobramycin in a tobramycin-calcium sulfate delivery system (TCDS) was 88.0 % (3.0 mm diameter) and 84.55 % (4.8 mm diameter). At the 15th day, approximately 27.92% of vancomycin was and 29.35% of tobramycin was released from the local implant in vivo. Using SEM, numerous vancomycin and tobramycin particles were found to be attached to the columnar calcium sulfate crystals at the start of the experiment. The release behavior of the two antibiotics followed a combination of Fickian diffusion and Case II transport mechanisms within the first 48 h, and a Fickian diffusion mechanism during the subsequent time period. The correlation coefficient of tobramycin and vancomycin in vivo and in vitro was 0.9704–0.9949 and 0.9549–0.9782, respectively. Conclusion: A good correlation of the in vivo and in vitro cumulative release rates was observed by comparing the cumulative release rate of drugs in vitro by means of the dynamic eluting model, and in the DTF. Therefore, our study has proved that it is possible to use the dynamic eluting model as a cautious predictor of in vivo release.


Sign in / Sign up

Export Citation Format

Share Document