Morphological and histological analysis on the in vivo degradation of poly (propylene fumarate)/(calcium sulfate/β-tricalcium phosphate)

2011 ◽  
Vol 13 (4) ◽  
pp. 623-631 ◽  
Author(s):  
Zhongyu Cai ◽  
Tao Zhang ◽  
Lizhi Di ◽  
Dong-Ming Xu ◽  
Dong-Hao Xu ◽  
...  
Author(s):  
Qiuju Miao ◽  
Nan Jiang ◽  
Qinmeng Yang ◽  
Ismail mohamed Hussein ◽  
Zhen Luo ◽  
...  

Abstract Various requirements for the repair of complex bone defects have motivated to development of scaffolds with adjustable degradation rates and biological functions. Tricalcium phosphate and calcium sulfate are the most commonly used bone repair materials in the clinic, how to better combine tricalcium phosphate and calcium sulfate and play their greatest advantages in the repair of osteoporotic bone defect is the focus of our research. In this study, a series of scaffolds with multistage-controlled degradation properties composed of strontium-doped calcium sulfate (SrCSH) and strontium-doped tricalcium phosphate microspheres (Sr-TCP) scaffolds were prepared, and their osteogenic activity, in vivo degradation and bone regeneration ability in tibia of osteoporotic rats were evaluated. In vitro studies revealed that different components of SrCSH/Sr-TCP scaffolds significantly promoted the proliferation and differentiation of MC3T3-E1 cells, which showed a good osteogenic induction activity. In vivo degradation results showed that the degradation time of composite scaffolds could be controlled in a large range (6-12 months) by controlling the porosity and phase composition of Sr-TCP microspheres. The results of osteoporotic femoral defect repair showed that when the degradation rate of scaffold matched with the growth rate of new bone, the parameters such as BMD, BV/TV, Tb.Th, angiogenesis marker CD31 and new bone formation marker OCN expression were higher, which promoted the rapid repair of osteoporotic bone defects. On the contrary, the slow degradation rate of scaffolds hindered the growth of new bone to a certain extent. This study elucidates the importance of the degradation rate of scaffolds for the repair of osteoporotic bone defects, and the design considerations can be extended to other bone repair materials, which is expected to provide new ideas for the development of tissue engineering materials in the future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nan Jiang ◽  
Devendra H. Dusane ◽  
Jacob R. Brooks ◽  
Craig P. Delury ◽  
Sean S. Aiken ◽  
...  

AbstractThis study investigated the efficacy of a biphasic synthetic β-tricalcium phosphate/calcium sulfate (β-TCP/CS) bone graft substitute for compatibility with vancomycin (V) in combination with tobramycin (T) or gentamicin (G) evidenced by the duration of potency and the prevention and killing efficacies of P. aeruginosa (PAO1) and S. aureus (SAP231) biofilms in in vitro assays. Antibiotic loaded β-TCP/CS beads were compared with antibiotic loaded beads formed from a well characterized synthetic calcium sulfate (CS) bone void filler. β-TCP/CS antibiotic loaded showed antimicrobial potency against PAO1 in a repeated Kirby-Bauer like zone of inhibition assay for 6 days compared to 8 days for CS. However, both bead types showed potency against SAP231 for 40 days. Both formulations loaded with V + T completely prevented biofilm formation (CFU below detection limits) for the 3 days of the experiment with daily fresh inoculum challenges (P < 0.001). In addition, both antibiotic loaded materials and antibiotic combinations significantly reduced the bioburden of pre-grown biofilms by between 3 and 5 logs (P < 0.001) with V + G performing slightly better against PAO1 than V + T. Our data, combined with previous data on osteogenesis suggest that antibiotic loaded β-TCP/CS may have potential to stimulate osteogenesis through acting as a scaffold as well as simultaneously protecting against biofilm infection. Future in vivo experiments and clinical investigations are warranted to more comprehensively evaluate the use of β-TCP/CS in the management of orthopaedic infections.


Biomaterials ◽  
2005 ◽  
Vol 26 (22) ◽  
pp. 4616-4623 ◽  
Author(s):  
Elizabeth L. Hedberg ◽  
Henriette C. Kroese-Deutman ◽  
Charles K. Shih ◽  
Roger S. Crowther ◽  
Darrell H. Carney ◽  
...  

2016 ◽  
Vol 45 ◽  
pp. 340-348 ◽  
Author(s):  
Sarah M. Bennett ◽  
Meera Arumugam ◽  
Samuel Wilberforce ◽  
Davide Enea ◽  
Neil Rushton ◽  
...  

2020 ◽  
Vol 11 (3-2020) ◽  
pp. 204-209
Author(s):  
D. R. Khayrutdinova ◽  
◽  
O. S. Antonova ◽  
M. A. Golgberg ◽  
S. V. Smirnov ◽  
...  

Composite cements based on the tricalcium phosphate (TCP) —calcium sulfate (CS) system were synthesized and investigated. The second component which were introduced into the cement paste (TCP) in the form of modified carbonate anion granules is the calcium sulfate. As a result, new composite cement materials based on the tricalcium phosphate —carbonate —substituted calcium sulfate (granules) system can find their application in regenerative medicine due to the possibility of pore space formation in vivo.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 29
Author(s):  
Seung Kyun Yoon ◽  
Jin Ho Yang ◽  
Hyun Tae Lim ◽  
Young-Wook Chang ◽  
Muhammad Ayyoob ◽  
...  

Herein, spinal fixation implants were constructed using degradable polymeric materials such as PGA–PLA block copolymers (poly(glycolic acid-b-lactic acid)). These materials were reinforced by blending with HA-g-PLA (hydroxyapatite-graft-poly lactic acid) and PGA fiber before being tested to confirm its biocompatibility via in vitro (MTT assay) and in vivo animal experiments (i.e., skin sensitization, intradermal intracutaneous reaction, and in vivo degradation tests). Every specimen exhibited suitable biocompatibility and biodegradability for use as resorbable spinal fixation materials.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 946
Author(s):  
Katharina Kowalewicz ◽  
Elke Vorndran ◽  
Franziska Feichtner ◽  
Anja-Christina Waselau ◽  
Manuel Brueckner ◽  
...  

Calcium magnesium phosphate cements (CMPCs) are promising bone substitutes and experience great interest in research. Therefore, in-vivo degradation behavior, osseointegration and biocompatibility of three-dimensional (3D) powder-printed CMPC scaffolds were investigated in the present study. The materials Mg225 (Ca0.75Mg2.25(PO4)2) and Mg225d (Mg225 treated with diammonium hydrogen phosphate (DAHP)) were implanted as cylindrical scaffolds (h = 5 mm, Ø = 3.8 mm) in both lateral femoral condyles in rabbits and compared with tricalcium phosphate (TCP). Treatment with DAHP results in the precipitation of struvite, thus reducing pore size and overall porosity and increasing pressure stability. Over 6 weeks, the scaffolds were evaluated clinically, radiologically, with Micro-Computed Tomography (µCT) and histological examinations. All scaffolds showed excellent biocompatibility. X-ray and in-vivo µCT examinations showed a volume decrease and increasing osseointegration over time. Structure loss and volume decrease were most evident in Mg225. Histologically, all scaffolds degraded centripetally and were completely traversed by new bone, in which the remaining scaffold material was embedded. While after 6 weeks, Mg225d and TCP were still visible as a network, only individual particles of Mg225 were present. Based on these results, Mg225 and Mg225d appear to be promising bone substitutes for various loading situations that should be investigated further.


2021 ◽  
Vol 27 ◽  
pp. 102369
Author(s):  
Shijun Lu ◽  
Xiaochen Tang ◽  
Qingqing Lu ◽  
Jiwei Huang ◽  
Xinran You ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document