scholarly journals Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions

2020 ◽  
Vol 11 ◽  
pp. 770-781
Author(s):  
Secil Öztürk ◽  
Yu-Xuan Xiao ◽  
Dennis Dietrich ◽  
Beatriz Giesen ◽  
Juri Barthel ◽  
...  

Covalent triazine frameworks (CTFs) are little investigated, albeit they are promising candidates for electrocatalysis, especially for the oxygen evolution reaction (OER). In this work, nickel nanoparticles (from Ni(COD)2) were supported on CTF-1 materials, which were synthesized from 1,4-dicyanobenzene at 400 °C and 600 °C by the ionothermal method. CTF-1-600 and Ni/CTF-1-600 show high catalytic activity towards OER and a clear activity for the electrochemical oxygen reduction reaction (ORR). Ni/CTF-1-600 requires 374 mV overpotential in OER to reach 10 mA/cm2, which outperforms the benchmark RuO2 catalyst, which requires 403 mV under the same conditions. Ni/CTF-1-600 displays an OER catalytic activity comparable with many nickel-based electrocatalysts and is a potential candidate for OER. The same Ni/CTF-1-600 material shows a half-wave potential of 0.775 V for ORR, which is slightly lower than that of commercial Pt/C (0.890 V). Additionally, after accelerated durability tests of 2000 cycles, the material showed only a slight decrease in activity towards both OER and ORR, demonstrating its superior stability.

2018 ◽  
Vol 47 (42) ◽  
pp. 15217-15225 ◽  
Author(s):  
Myeongjin Kim ◽  
Hyun Ju ◽  
Jooheon Kim

Tl2Rh2O7 nanoparticles are developed for effective bifunctional electrocatalysts for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). The favorable oxidation potential of Tl and Rh ions means that they can easily donate their electrons, improving the electron transport and bifunctional catalytic activity.


Author(s):  
Turgut Sönmez ◽  
Kendra Solveig Belthle ◽  
Andree Iemhoff ◽  
Jan Uecker ◽  
Jens Artz ◽  
...  

A covalent triazine framework coated on glassy carbon electrode performs high catalytic activity towards the ORR.


2021 ◽  
Author(s):  
Lili Fan ◽  
Zixi Kang ◽  
Mengfei Li ◽  
Daofeng Sun

Among various kinds of materials that have been investigated as electrocatalysts for hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), metal-organic frameworks (MOFs) emerge as...


2016 ◽  
Vol 4 (2) ◽  
pp. 620-631 ◽  
Author(s):  
Islam M. Mosa ◽  
Sourav Biswas ◽  
Abdelhamid M. El-Sawy ◽  
Venkatesh Botu ◽  
Curtis Guild ◽  
...  

Understanding the origin of manganese oxide activity for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is a key step towards rationally designing of highly active catalysts capable of competing with the widely used, state-of-art noble metal catalysts.


2022 ◽  
Author(s):  
Huixin Ma ◽  
Daijie Deng ◽  
Honghui Zhang ◽  
Feng Chen ◽  
Junchao Qian ◽  
...  

Nitrogen-coordinated single-atom manganese in multi-dimensional nitrogen-doped carbon electrocatalysts (Mn-NC) was successful constructed by combing two-dimensional nanosheets and one-dimensional nanofibers. The Mn-NC exhibited excellent oxygen reduction reaction catalytic activity with half-wave...


Author(s):  
wei yang ◽  
Wenbin Gong ◽  
Yanhong Shi ◽  
Xiaona Wang ◽  
Yulian Wang ◽  
...  

Platinum nanocatalysts mediated by 3d transition metals show improved activity for oxygen reduction reaction (ORR) but poor activity for oxygen evolution reaction (OER). Herein, we report the preparation of a...


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1163
Author(s):  
Ning Cui ◽  
Kexiao Bi ◽  
Wei Sun ◽  
Qianqian Wu ◽  
Yinan Li ◽  
...  

MOF–derived porous carbon is a type of promising catalyst to replace expensive Pt–based catalysts for oxygen reduction reaction (ORR). The catalytic activity for ORR depends closely on pyrolysis conditions. In this work, a Co–doped ZIF–8 material was chosen as a research object. The effect of pyrolysis conditions (temperature, heating rate, two–step heating) on the ORR performance of ZIF–derived carbon catalysts was systematically studied. The Co–ZIF–8 catalyst carbonized at 900 °C exhibits better ORR catalytic activity than that carbonized at 800 °C and 1000 °C. Moreover, a low heating rate can enhance catalytic activity. Two–step pyrolysis is proven to be an effective way to improve the performance of catalysts. Reducing the heating rate in the low–temperature stage is more beneficial to the ORR performance, compared to the heating rate in the high–temperature stage. The results show that the Co–ZIF–8 catalyst exhibits the best performance when the precursor was heated to 350 °C at 2 °C/min, and then heated to 900 °C at 5 °C/min. The optimum Co–ZIF–8 catalyst shows a half–wave potential of 0.82 V and a current density of 5.2 mA·cm−2 in 0.1 M KOH solution. It also exhibits high content of defects and good graphitization. TEM mapping shows that Co and N atoms are highly dispersed in the polyhedral carbon skeleton. However, two–step pyrolysis has no significant effect on the stability of the catalyst.


2021 ◽  
Author(s):  
Fengjiao Yu ◽  
Qi Ying ◽  
Shaofeng Ni ◽  
Chenxue Li ◽  
Daxiang Xue ◽  
...  

Large-scale application of rechargeable Zn-air batteries requires low-cost electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) as alternatives to noble metals. Herein, FeCo nanoparticles embedded in N-doped...


Sign in / Sign up

Export Citation Format

Share Document