scholarly journals Synthesis and electrochemical performance of Li2Co1− x M x PO4F (M = Fe, Mn) cathode materials

2013 ◽  
Vol 4 ◽  
pp. 860-867 ◽  
Author(s):  
Nellie R Khasanova ◽  
Oleg A Drozhzhin ◽  
Stanislav S Fedotov ◽  
Darya A Storozhilova ◽  
Rodion V Panin ◽  
...  

In the search for high-energy materials, novel 3D-fluorophosphates, Li2Co1− x Fe x PO4F and Li2Co1− x Mn x PO4F, have been synthesized. X-ray diffraction and scanning electron microscopy have been applied to analyze the structural and morphological features of the prepared materials. Both systems, Li2Co1− x Fe x PO4F and Li2Co1− x Mn x PO4F, exhibited narrow ranges of solid solutions: x ≤ 0.3 and x ≤ 0.1, respectively. The Li2Co0.9Mn0.1PO4F material demonstrated a reversible electrochemical performance with an initial discharge capacity of 75 mA·h·g−1 (current rate of C/5) upon cycling between 2.5 and 5.5 V in 1 M LiBF4/TMS electrolyte. Galvanostatic measurements along with cyclic voltammetry supported a single-phase de/intercalation mechanism in the Li2Co0.9Mn0.1PO4F material.

2013 ◽  
Vol 669 ◽  
pp. 355-359
Author(s):  
Li Yuan ◽  
Yun Zhang ◽  
Wen Jing Liu ◽  
Fu Wang ◽  
Chao Lu

The influences of re-sintering on the structure and electrochemical performance of LiNi1/3Co1/3Mn1/3O2 were researched in this paper. The synthesized materials were characterized and tested by means of X-ray diffraction (XRD) and electrochemical measurements respectively. It was found that the re-sintered samples with better well-ordered layered structure, more perfect crystallization and more complete crystal structure will be formed with increasing temperature. Moreover, reasonable re-sintering time was required. The materials re-sintered at 860°C for 2h exhibited the best electrochemical performance, including high initial discharge capacity of 150.6 mAh•g-1 and coulomb efficiency of 84% at 0.2C rate.


2013 ◽  
Vol 800 ◽  
pp. 501-504
Author(s):  
Chun Xia Gong ◽  
Oluwatosin Emmanued Bankole ◽  
Li Xu Lei

Li0.96Na0.04Ni1/3Co1/3Mn1/3O2with CTAB as additive was synthesized. X-ray diffraction pattern reveals the product of the material with CTAB is pure phase. Scanning electron microscopy shows that the powders are average of 200 nm. Electrochemical test shows it in terms of high initial discharge capacity (175.6 mAhg-1) and exhibits good cycle performance with the capacity retention of 93.39 % after 90 cycles compared to the material has no additive (167.6 mAhg-1and 71.18 %) at 0.1 C rate. Therefore, CTAB as additive should improve the performance of Li0.96Na0.04Ni1/3Co1/3Mn1/3O2cathode material.


2014 ◽  
Vol 895 ◽  
pp. 355-358 ◽  
Author(s):  
Nurul Atikah Mohd Mokhtar ◽  
Azira Azahidi ◽  
Kelimah Elong ◽  
Nurhanna Badar ◽  
Norlida Kamarulzaman

The effect of different cation substitution on the electrochemical performance of layered LiNi0.8-xCo0.2MxO2(M= Fe, Al;x=0.1) cathode materials were investigated. LiNi0.8-xCo0.2MxO2(M= Fe, Al;x=0.1) cathode materials were successfully synthesized by a combustion method with an annealing temperature of 800 °C for 24h. The physical and electrochemical properties of the materials were examined using X-ray Diffractometer (XRD), Field Emission Scanning Electron Microscopy (FESEM) and electrochemical charge-discharge. The XRD data showed that all the materials are single phase, hexagonal α-NaFeO2 type structure. The initial discharge capacity showed that Fe and Al substituted materials gave 8 % and 10 % improvement compared to LiNi0.8Co0.2O2material. The discharge cycling also showed that the cycle stability has improved when Fe and Al was substituted. In view of electrochemical performance, Al containing sample was found to be superior to those of LiNi0.8Co0.2O2and Fe substituted cathode materials.


2021 ◽  
Vol 66 (1) ◽  
pp. 57-64
Author(s):  
Hang Pham Vu Bich ◽  
Yen Nguyen Hai ◽  
Mai Phung Thi Thanh ◽  
Dung Dang Duc ◽  
Hung Nguyen Manh ◽  
...  

In this study, we present the process of synthesis FexNi1-xMn2O4 (x = 0; 0.1; 0.3; 0.5; 0.7; 0.9; 1) by method sol-gel. Scanning electron microscope results shows that the particle size is about 50 nm. The X-ray diffraction diagram shows that the samples are single phase, changing structure clearly as the x ratio increases from 0 to 1. The lattice constant, the bond length also changes with x-value as shown on the Raman scattering spectrum. The results of the vibrating sample magnetometer show that the magnetism of the material FexNi1-xMn2O4 changes with the value of x and reaches a maximum in the range x from 0.5 to 0.7.


1989 ◽  
Vol 169 ◽  
Author(s):  
Winnie Wong‐Ng ◽  
Lawrence P. Cook ◽  
Michael D. Hill ◽  
Boris Paretzkin ◽  
E.R. Fuller

AbstractThe influence of the ionic size of the lanthanides R on melting relations of Ba2RCu3O6+x, where R=Y, Eu and Nd, was studied and compared with that of a high Tc superconductor mixed‐lanthanide phase Ba2(Y.75Eu.125Nd 125)Cu3O6+xThese materials have been characterized by a variety of methods including differential thermogravimetric analysis (DTA), scanning electron microscopy (SEM) with energy dispersive X‐ray spectroscopy (EDX) and X‐ray powder diffraction. Single phase samples of Ba2(Y.75Eu.125Nd.125)Cu3O6+x were annealed at 1004, 1040, 1052, 1060, 1078, 1107 and 1160°C and quenched into a helium gas container cooled by liquid nitrogen. The SEM micrographs of these samples showed the progressive chnages in features of the microstructures from sintering and grain growth through melting and then recrystallization from the melt. The addition of the SEM technique in conjunction with X‐ray diffraction has been helpful in the study of phase equilibria in this system.


2019 ◽  
Vol 18 (03n04) ◽  
pp. 1940067
Author(s):  
P. Vitiaz ◽  
N. Lyakhov ◽  
T. Grigoreva ◽  
E. Pavlov

The interaction between a solid inert metal Ir and an active liquid metal Ga during mechanical activation in a high-energy planetary mill is studied by X-ray diffraction and scanning electron microscopy with high-resolution energy dispersive X-ray microanalysis. The effect of mechanical activation on the formation of GaxIry intermetallic compounds and GaxIry/Ir composites and their solubility in acids was investigated. The subsequent extraction of Ga from intermetallic compounds and composites in the mixture of concentrated acids [Formula: see text] makes it possible to produce nanoscale Ir.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2400 ◽  
Author(s):  
Zoulikha Hebboul ◽  
Amira Ghozlane ◽  
Robin Turnbull ◽  
Ali Benghia ◽  
Sara Allaoui ◽  
...  

We present a cost- and time-efficient method for the controlled preparation of single phase La(IO3)3 nanoparticles via a simple soft-chemical route, which takes a matter of hours, thereby providing an alternative to the common hydrothermal method, which takes days. Nanoparticles of pure α-La(IO3)3 and pure δ-La(IO3)3 were synthesised via the new method depending on the source of iodate ions, thereby demonstrating the versatility of the synthesis route. The crystal structure, nanoparticle size-dispersal, and chemical composition were characterised via angle- and energy-dispersive powder X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy.


2011 ◽  
Vol 399-401 ◽  
pp. 1487-1490
Author(s):  
Zhi Yong Yu ◽  
Han Xing Liu

The spinel-type Li4Ti5O12 cathode materials were synthesized by a self-combustion method. The effects of synthesis temperature on the structural and electrochemical properties of the Li4Ti5O12 were investigated. The prepared samples were characterized by X-ray diffraction (XRD), SEM, TEM and electrochemical analysis. The results revealed that pure phase and well-crystallized Li4Ti5O12 with nano-sized could be synthesized at a calcination temperature of 750°C. The sample prepared under the condition had the highest initial discharge capacity of 164 mAh/g and shown good capacity rentention during 50 cycles between 1.0-2.5V at 0.1C.


2013 ◽  
Vol 802 ◽  
pp. 119-123
Author(s):  
Supamas Wirunchit ◽  
Rangson Muanghlua ◽  
Supamas Wirunchit ◽  
Wanwilai Vittayakorn ◽  
Naratip Vittayakorn

Nanocrystalline barium zirconium titanate, BaZr0.4Ti0.6O3, was synthesized successfully via the sonochemical process. The effects of reaction time on the precipitation of Ba(Zr,Ti)O3 particles were investigated briefly. The crystal structure as well as molecular vibrations and morphology were investigated. X-ray diffraction indicated that the powders exhibited a single phase perovskite structure, without the presence of pyrochlore or unwanted phases at the reaction time of 60 min. Nanocrystals were formed before being oriented and aggregated into large particles in aqueous solution under ultrasonic irradiation. A scanning electron microscopy (SEM) photograph showed the BZT powder as spherical in shape with uniform nanosized features.


2018 ◽  
Vol 941 ◽  
pp. 943-948
Author(s):  
Katja Hauschildt ◽  
Andreas Stark ◽  
Hilmar Burmester ◽  
Ursula Tietze ◽  
Norbert Schell ◽  
...  

TiAl alloys are increasingly used as a lightweight material, for example in aero engines, which also leads to the requirement for suitable repair techniques. Transient liquid phase bonding is a promising method for the closure of cracks (in non-critical or non-highly loaded areas). The brazing solder Ti-24Ni was investigated for brazing the alloy Ti-45Al-5Nb-0.2B-0.2C (in at. %). After brazing, the joint exhibits different microstructures and phase compositions. The transient liquid phase bonding process was investigated in the middle of the joint region in situ to acquire time resolved information of the phases, their development, and thus the brazing process. These investigations were performed using high-energy X-ray diffraction at the “High-Energy Materials Science” beamline HEMS, located at the synchrotron radiation facility PETRA III at DESY in Hamburg, Germany. For this, we used an induction furnace, which is briefly described here. During the analysis of the diffraction data with Rietveld refinement, the amount of liquid was refined with Gaussian peaks and thus could be quantified. Furthermore, while brazing four different phases occurred in the middle of the joint region over time. Additionally, the degree of ordering of the βo phase was determined with two ideal stoichiometric phases (completely ordered and disordered). Altogether, the phase composition changed clearly over the first six hours of the brazing process.


Sign in / Sign up

Export Citation Format

Share Document