scholarly journals Air–water interface of submerged superhydrophobic surfaces imaged by atomic force microscopy

2017 ◽  
Vol 8 ◽  
pp. 1671-1679 ◽  
Author(s):  
Markus Moosmann ◽  
Thomas Schimmel ◽  
Wilhelm Barthlott ◽  
Matthias Mail

Underwater air retention of superhydrophobic hierarchically structured surfaces is of increasing interest for technical applications. Persistent air layers (the Salvinia effect) are known from biological species, for example, the floating fern Salvinia or the backswimmer Notonecta. The use of this concept opens up new possibilities for biomimetic technical applications in the fields of drag reduction, antifouling, anticorrosion and under water sensing. Current knowledge regarding the shape of the air–water interface is insufficient, although it plays a crucial role with regards to stability in terms of diffusion and dynamic conditions. Optical methods for imaging the interface have been limited to the micrometer regime. In this work, we utilized a nondynamic and nondestructive atomic force microscopy (AFM) method to image the interface of submerged superhydrophobic structures with nanometer resolution. Up to now, only the interfaces of nanobubbles (acting almost like solids) have been characterized by AFM at these dimensions. In this study, we show for the first time that it is possible to image the air–water interface of submerged hierarchically structured (micro-pillars) surfaces by AFM in contact mode. By scanning with zero resulting force applied, we were able to determine the shape of the interface and thereby the depth of the water penetrating into the underlying structures. This approach is complemented by a second method: the interface was scanned with different applied force loads and the height for zero force was determined by linear regression. These methods open new possibilities for the investigation of air-retaining surfaces, specifically in terms of measuring contact area and in comparing different coatings, and thus will lead to the development of new applications.

2019 ◽  
Vol 536 ◽  
pp. 363-371 ◽  
Author(s):  
Aaron Elbourne ◽  
Madeleine F. Dupont ◽  
Simon Collett ◽  
Vi Khanh Truong ◽  
XiuMei Xu ◽  
...  

2008 ◽  
Vol 59 (11) ◽  
Author(s):  
Maria Tomoaia-Cotisel ◽  
Aurora Mocanu

The phase behaviour and surface structure of dipalmitoyl phosphatidyl choline (DPPC) monolayers at the air/water interface, in the absence and the presence of procaine, have been investigated by Langmuir-Blodgett (LB) technique and atomic force microscopy. The LB films were transferred on mica, at a controlled surface pressure, characteristic for the expanded liquid to condensed liquid phase transition of pure DPPC monolayers. The results indicate that procaine penetrates into and specifically interacts with phospholipid monolayers stabilizing the lipid membrane interface.


Friction ◽  
2021 ◽  
Author(s):  
Xinfeng Tan ◽  
Dan Guo ◽  
Jianbin Luo

AbstractDynamic friction occurs not only between two contact objects sliding against each other, but also between two relative sliding surfaces several nanometres apart. Many emerging micro- and nano-mechanical systems that promise new applications in sensors or information technology may suffer or benefit from noncontact friction. Herein we demonstrate the distance-dependent friction energy dissipation between the tip and the heterogeneous polymers by the bimodal atomic force microscopy (AFM) method driving the second order flexural and the first order torsional vibration simultaneously. The pull-in problem caused by the attractive force is avoided, and the friction dissipation can be imaged near the surface. The friction dissipation coefficient concept is proposed and three different contact states are determined from phase and energy dissipation curves. Image contrast is enhanced in the intermediate setpoint region. The work offers an effective method for directly detecting the friction dissipation and high resolution images, which overcomes the disadvantages of existing methods such as contact mode AFM or other contact friction and wear measuring instruments.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Juan Gros-Otero ◽  
Samira Ketabi ◽  
Rafael Cañones-Zafra ◽  
Montserrat Garcia-Gonzalez ◽  
Cesar Villa-Collar ◽  
...  

Abstract Background To compare the anterior surface roughness of two commercially available posterior chamber phakic intraocular lenses (IOLs) using atomic force microscopy (AFM). Methods Four phakic IOLs were used for this prospective, experimental study: two Visian ICL EVO+ V5 lenses and two iPCL 2.0 lenses. All of them were brand new, were not previously implanted in humans, were monofocal and had a dioptric power of − 12 diopters (D). The anterior surface roughness was assessed using a JPK NanoWizard II® atomic force microscope in contact mode immersed in liquid. Olympus OMCL-RC800PSA commercial silicon nitride cantilever tips were used. Anterior surface roughness measurements were made in 7 areas of 10 × 10 μm at 512 × 512 point resolution. The roughness was measured using the root-mean-square (RMS) value within the given regions. Results The mean of all anterior surface roughness measurements was 6.09 ± 1.33 nm (nm) in the Visian ICL EVO+ V5 and 3.49 ± 0.41 nm in the iPCL 2.0 (p = 0.001). Conclusion In the current study, we found a statistically significant smoother anterior surface in the iPCL 2.0 phakic intraocular lenses compared with the VISIAN ICL EVO+ V5 lenses when studied with atomic force microscopy.


Sign in / Sign up

Export Citation Format

Share Document