scholarly journals Realizing and Adjusting the Thermoelectric Application of MoO3 Monolayer via Oxygen Vacancies

2019 ◽  
Author(s):  
Wenwen Zheng ◽  
Wei Cao ◽  
Ziyu Wang ◽  
Huixiong Deng ◽  
Jing Shi ◽  
...  

We have investigated the thermoelectric properties of MoO3 monolayer and its defective structures with oxygen vacancies by using first-principles method combined with Boltzmann transport theory. Our results show that the thermoelectric properties of MoO3 monolayer exhibit an anisotropic behavior which is caused by the similar anisotropic phenomenon of electronic conductivity and thermal conductivity. Moreover, the creation of oxygen vacancies proves to be an effective way to enhance the ZT values of MoO3 monolayer which is caused by the sharp peak near the Fermi level in density of states. The increased ZT value can reach 0.84 along x-axis at 300K.

2019 ◽  
Vol 10 ◽  
pp. 2031-2038
Author(s):  
Wenwen Zheng ◽  
Wei Cao ◽  
Ziyu Wang ◽  
Huixiong Deng ◽  
Jing Shi ◽  
...  

We have investigated the thermoelectric properties of a pristine MoO3 monolayer and its defective structures with different oxygen vacancies using first-principles methods combined with Boltzmann transport theory. Our results show that the thermoelectric properties of the MoO3 monolayer exhibit an evident anisotropic behavior which is caused by the similar anisotropy of the electrical and thermal conductivity. The thermoelectric materials figure of merit (ZT) value along the x- and the y-axis is 0.72 and 0.08 at 300 K, respectively. Moreover, the creation of oxygen vacancies leads to a sharp peak near the Fermi level in the density of states. This proves to be an effective way to enhance the ZT values of the MoO3 monolayer. The increased ZT values can reach 0.84 (x-axis) and 0.12 (y-axis) at 300 K.


2021 ◽  
Vol 7 ◽  
Author(s):  
Liangshuang Fan ◽  
Hengyu Yang ◽  
Guofeng Xie

Recently, monolayer of triphosphides (e.g., InP3, SnP3, and GaP3) attracts much attention due to their good thermoelectric performance. Herein, we predict a novel triphosphide monolayer AsP3 and comprehensively investigate its thermoelectric properties by combining first-principles calculations and semiclassical Boltzmann transport theory. The results show that AsP3 monolayer has an ultralow thermal conductivity of 0.36 and 0.55 Wm K−1 at room temperature along the armchair and zigzag direction. Surprisingly, its maximum Seebeck coefficient in the p-type doping reaches 2,860 µVK−1. Because of the ultralow thermal conductivity and ultrahigh Seebeck coefficient, the thermoelectric performance of AsP3 monolayer is excellent, and the maximum ZT of p-type can reach 3.36 at 500 K along the armchair direction, which is much higher than that of corresponding bulk AsP3 at the same temperature. Our work indicates that the AsP3 monolayer is the promising candidate in TE applications and will also stimulate experimental scientists’ interest in the preparation, characterization, and thermoelectric performance tuning.


2020 ◽  
Vol 8 (2) ◽  
pp. 581-590 ◽  
Author(s):  
C. Y. Wu ◽  
L. Sun ◽  
J. C. Han ◽  
H. R. Gong

First-principles calculation and Boltzmann transport theory have been combined to comparatively investigate the band structures, phonon spectra, and thermoelectric properties of both β-BiSb and β-BiAs monolayers.


RSC Advances ◽  
2019 ◽  
Vol 9 (44) ◽  
pp. 25900-25911 ◽  
Author(s):  
Esmaeil Pakizeh ◽  
Jaafar Jalilian ◽  
Mahnaz Mohammadi

In this study, based on the density functional theory and semi-classical Boltzmann transport theory, we investigated the structural, thermoelectric, optical and phononic properties of the Fe2ZrP compound.


2015 ◽  
Vol 17 (44) ◽  
pp. 29647-29654 ◽  
Author(s):  
Yasumitsu Suzuki ◽  
Hisao Nakamura

We study the thermoelectric properties of tin selenide (SnSe) by using first-principles calculations coupled with the Boltzmann transport theory.


2017 ◽  
Vol 31 (29) ◽  
pp. 1750265 ◽  
Author(s):  
Guangtao Wang ◽  
Dongyang Wang ◽  
Xianbiao Shi ◽  
Yufeng Peng

We studied the crystal and electronic structures of LaOBiSSe and LaOBiSeS using first-principles calculations and confirmed that the LaOBiSSe (S atoms on the top of BiCh2 layer and Se atoms in the inner of it) is the stable structure. Then we calculate the thermoelectric properties of LaOBiSSe using the standard Boltzmann transport theory. The in-plane thermoelectric performance are better than that along the c-axis in this n-type material. The in-plane power factor [Formula: see text] of n-type LaOBiSSe is as high as 12 [Formula: see text]W/cmK2 at 900 K with figure of merit ZT = 0.53 and [Formula: see text]. The ZT maximum appears around [Formula: see text] in a wide temperature region. The results indicate that LaOBiSSe is a 2D material with good thermal performance in n-type doping.


RSC Advances ◽  
2020 ◽  
Vol 10 (48) ◽  
pp. 28501-28508
Author(s):  
Yang Hu ◽  
Yurong Jin ◽  
Guangbiao Zhang ◽  
Yuli Yan

We investigate the transport properties of bulk Ca2YZ (Y = Au, Hg; Z = As, Sb, Bi, Sn and Pb) by a combination method of first-principles and Boltzmann transport theory.


2018 ◽  
Vol 1 (1) ◽  
pp. 131-136
Author(s):  
Shun-Chiao Chan ◽  
Yi-Chih Wang ◽  
Che-Wun Hong

This research employs the first principles computation to simulate the chlorine (Cl) doping effect with different proportion (x value) on the photovoltaic and thermoelectric properties of bulk mixed halide methyl-ammonium lead perovskites (MAPbI3-xClx). In the study, the density functional theory (DFT) and Boltzmann transport equation (BTE) are applied to calculate the optical band gaps, electrical conductivity , carrier thermal conductivity , and Seebeck coefficient S. The density functional perturbation theory (DFPT) and Debye model are used to calculate the phonon thermal conductivity . Tuning the greatest thermoelectric figure of merit (ZT) with suitable solar absorbance range is the major target for our solar thermoelectric chip design. The simulation results reveal that doping Cl will increase the electronic conductivity, phonon thermal conductivity, and causes a blue shift in the light absorption. The main contribution to the total thermal conductivity is mainly from optical phonons, and the main absorbance wavelength locates in the ultraviolet and visible light region (40nm <  < 700nm). When x=0.25, MAPbI2.75Cl0.25 achieves the optimized tuning for both light absorption coefficient α and figure of merit ZT in our simulation cases.


2010 ◽  
Vol 24 (21) ◽  
pp. 2251-2265 ◽  
Author(s):  
S. M. HOSSEINI ◽  
H. A. RAHNAMAYE ALIABAD ◽  
A. KOMPANY

Electronic and thermoelectric properties of pure In 2 O 3 and In 1.5 T 0.5 O 3 ( T = Sc , Y ) alloys including the band gap, the electrical and thermal conductivity, Seebeck coefficient and figure of merit have been investigated using semi-classical Boltzmann transport theory. The calculated results indicated that substituting indium atoms by these dopants have a significant influence on the electronic properties of alloyed In 2 O 3 crystals. Substitution of Sc and Y atoms for In atoms increases the band gaps and Seebeck coefficient. The intrinsic relations between electronic structures and the transport performances of In 2 O 3 and its alloys with Sc and Y are also discussed.


RSC Advances ◽  
2016 ◽  
Vol 6 (104) ◽  
pp. 102172-102182 ◽  
Author(s):  
Liang Zhang ◽  
Tie-Yu Lü ◽  
Hui-Qiong Wang ◽  
Wen-Xing Zhang ◽  
Shuo-Wang Yang ◽  
...  

The electronic structures and thermoelectric properties of (SrO)m(SrTiO3)n superlattices have been investigated using first-principles calculations and the Boltzmann transport theory.


Sign in / Sign up

Export Citation Format

Share Document