scholarly journals Design, synthesis and docking study of acyl thiourea derivatives as possible histone deacetylase inhibitors with a novel zinc binding group

2019 ◽  
Author(s):  
Duraid H Al-Amily ◽  
Mohammed H Mohammed

Histone deacetylase inhibitors with zinc binding groups often exhibit drawbacks like non-selectivity or toxic effects. Thus, there are continuous efforts to modify the currently available inhibitors or to discover new derivatives to overcome these problems. One approach is to synthesize new compounds with novel zinc binding groups. The present study describes the utilization of acyl thiourea functionality, known to possess the ability to complex with metals, to be a novel zinc binding group incorporated into the designed histone deacetylase inhibitors. N-adipoyl monoanilide thiourea (4) and N-pimeloyl monoanilide thiourea (5) have been synthesized and characterized successfully. They showed good cytotoxicity against cancer cells with low cytotoxicity against normal cells. Their binding mode to the active site of histone deacetylases have been studied by docking study.

2019 ◽  
Vol 87 (4) ◽  
pp. 28 ◽  
Author(s):  
Duraid H. Al-Amily ◽  
Mohammed Hassan Mohammed

Histone deacetylase inhibitors with zinc binding groups often exhibit drawbacks like non-selectivity or toxic effects. Thus, there are continuous efforts to modify the currently available inhibitors or to discover new derivatives to overcome these problems. One approach is to synthesize new compounds with novel zinc binding groups. The present study describes the utilization of acyl thiourea functionality, known to possess the ability to complex with metals, to be a novel zinc binding group incorporated into the designed histone deacetylase inhibitors. N-adipoyl monoanilide thiourea (4) and N-pimeloyl monoanilide thiourea (5) have been synthesized and characterized successfully. They showed inhibition of growth of human colon adenocarcinoma and mouse hepatoblastoma cells with low cytotoxic effect against normal human breast cells. Their binding mode to the active site of several histone deacetylases has been studied by docking and the results gave a preliminary indication that they could be successful histone deacetylase inhibitors.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 717 ◽  
Author(s):  
Na Zhao ◽  
Feifei Yang ◽  
Lina Han ◽  
Yuhua Qu ◽  
Di Ge ◽  
...  

Histone deacetylases (HDACs) have been proved to be promising targets for the treatment of cancer, and five histone deacetylase inhibitors (HDACis) have been approved on the market for the treatment of different lymphomas. In our previous work, we designed a series of novel coumarin-containing hydroxamate HDACis, among which compounds 6 and 7 displayed promising activities against tumor growth. Based on a molecular docking study, we further developed 26 additional analogues with the aim to improve activity of designed compounds. Several of these new derivatives not only showed excellent HDAC1 inhibitory effects, but also displayed significant growth inhibitory activities against four human cancer cell lines. Representative compounds, 13a and 13c, showed potent anti-proliferative activities against solid tumor cell lines with IC50 values of 0.36–2.91 µM and low cytotoxicity against Beas-2B and L-02 normal cells. Immunoblot analysis revealed that 13a and 13c dose-dependently increased the acetylation of histone H3 and H4. Importantly, the two compounds displayed much better anti-metastatic effects than SAHA against the MDA-MB-231 cell line. Moreover, 13a and 13c arrested MDA-MB-231 cells at G2/M phase and induced MDA-MB-231 cell apoptosis. Finally, the molecular docking study rationalized the high potency of compound 13c.


2003 ◽  
Vol 13 (24) ◽  
pp. 4321-4326 ◽  
Author(s):  
Takayoshi Suzuki ◽  
Yuki Nagano ◽  
Azusa Matsuura ◽  
Arihiro Kohara ◽  
Shin-ichi Ninomiya ◽  
...  

Author(s):  
Duraid Al-Amily ◽  
Mohammed H. Mohammed

Primary amide derivatives as histone deacetylase inhibitors (HDACIs) are very rare. This paper describes the synthesis of primary amide derivatives (compounds 6 and 7) that have the requirements to be histone deacetylase inhibitors of the zinc-binding type. Both of them exhibited good cytotoxicity against the tested cancer cell lines with much lower cytotoxicity against normal cell line.


ChemInform ◽  
2004 ◽  
Vol 35 (14) ◽  
Author(s):  
Takayoshi Suzuki ◽  
Yuki Nagano ◽  
Azusa Matsuura ◽  
Arihiro Kohara ◽  
Shin-ichi Ninomiya ◽  
...  

2021 ◽  
Vol 17 ◽  
Author(s):  
Ali Imani ◽  
Sepehr Soleymani ◽  
Rouhollah Vahabpour ◽  
Zahra Hajimahdi ◽  
Afshin Zarghi

Background: Taking the well-known drug, Piroxicam as a lead compound, we designed and synthesized two series of 1,2-benzothiazines 1,1-dioxide derivatives to assay their ability in inhibition of HIV-1 replication in cell culture. Objective: In this study, we describe the synthesis, docking study and biological evaluation of 1,2-benzothiazines 1,1- dioxide derivatives. Results: Most of the new compounds were active in the cell-based anti-HIV-1 assay with EC50 < 50 M. Among them, compounds 7g was found to be the most active molecule. Docking study using 3OYA pdb code on the most active molecule 7g with EC50 values of 10 M showed a similar binding mode to the HIV integrase inhibitors. Conclusion: Since all the compounds showed no remarkable cytotoxicity (CC50> 500 M), the designed scaffold is promising structure for development of new anti-HIV-1 agents.


2020 ◽  
Vol 16 (6) ◽  
pp. 761-773
Author(s):  
Huda K. Mahmoud ◽  
Hanadi A. Katouah ◽  
Marwa F. Harras ◽  
Thoraya A. Farghaly

Background: One of the most successful reagents used in the synthesis of the reactive enaminone is DMF-DMA, but it is very expensive with harmful effects on the human health and reacts with special compounds to generate the enaminone such as active methylene centers. Aim: In this article, we synthesized a new ketenaminal by simple method with inexpensive reagents (through desulfurization in diphenylether). Methods: Thus, a novel reactive ketenaminal (enaminone) was synthesized from the desulfurization of 2-((2-(4-chlorophenyl)-2-oxoethyl)thio)-5,7-bis(4-methoxyphenyl)pyrido[2,3-d]pyrimidin- 4(3H)-one with diphenylether. The starting keteneaminal was coupled with diazotized anilines via the known coupling conditions to give a new series of 2-(4-chlorophenyl)-1-(2-(arylhydrazono)-2- oxoethyl)-5,7-bis(4-methoxy-phenyl)pyrido[2,3-d]pyrimidin-4(1H)-ones. Results: The structures of the new compounds were elucidated based on their IR, 1H-NMR, 13CNMR, and Mass spectra. Moreover, the potency of these compounds as antimicrobial agents has been evaluated. The results showed that some of the products have high activity nearly equal to that of the used standard antibiotic. Additionally, the docking study was done to get the binding mode of the synthesized compounds with the binding site of the DHFR enzyme. The results of molecular docking of the synthesized arylhydrazono compounds are able to fit in DHFR binding site with binding energies ranging from -4.989 to -8.178 Kcal/mol. Conclusion: Our goal was achieved in this context by the synthesis of new ketenaminal from inexpensive reagents, which was utilized in the preparation of bioactive arylhydrazone derivatives.


Sign in / Sign up

Export Citation Format

Share Document