Auditory Processing Disorder as the Sole Manifestation of a Cerebellopontine and Internal Auditory Canal Lesion

2017 ◽  
Vol 28 (01) ◽  
pp. 091-101 ◽  
Author(s):  
Vasiliki Vivian Iliadou ◽  
Nikos Eleftheriadis

AbstractClinical importance of auditory processing disorder (APD) testing is often overlooked and regarded with skepticism given the challenging interpretation of results and the current growing debate of its nature and clinical entity.Presentation of this case is highly educational as APD is the single clinical manifestation of a large cerebellopontine and internal auditory canal lesion.A case report.The patient underwent a standard audiological evaluation with normal results. She was referred for APD evaluation. The APD test battery consisted of speech in babble (SinB), dichotic digits (DD), frequency and duration of pattern sequence testing, Random Gap Detection Test, and gaps in noise. These were followed by otoacoustic emissions testing, auditory brainstem responses (ABR) and magnetic resonance imaging (MRI).Her auditory processing results showed deficits in SinB and DD limited to the right ear as well as deficits in temporal processing. Both verbal and nonverbal tests exhibited deficits strictly limited to the right ear, which was in accordance with what she was experiencing as reduced loudness for the incoming sounds on the right ear. This less costly evaluation revealed that there was good reason to assess electrophysiologically the auditory system. ABR showed an abnormal waveform with either missing or severely prolongated wave V (depending on stimulus polarity). Otoacoustic emissions were normal. MRI was then implemented revealing a large cerebellopontine and internal auditory canal lesion.This clinical case stresses the importance of testing for APD with a psychoacoustical test battery despite current debate of lack of a gold standard diagnostic approach to APD. In this case, APD diagnosis led to a cerebellopontine lesion identification with extension to the right internal auditory canal. This rare cause of APD demonstrates the efficiency of the current diagnostic test battery in revealing lesional causes of central APD.

2013 ◽  
Vol 24 (07) ◽  
pp. 564-571 ◽  
Author(s):  
Erin Plyler ◽  
Ashley W. Harkrider

Background: A boy, aged 2 1/2 yr, experienced sudden deterioration of speech and language abilities. He saw multiple medical professionals across 2 yr. By almost 5 yr, his vocabulary diminished from 50 words to 4, and he was referred to our speech and hearing center. Purpose: The purpose of this study was to heighten awareness of Landau-Kleffner syndrome (LKS) and emphasize the importance of an objective test battery that includes serial auditory-evoked potentials (AEPs) to audiologists who often are on the front lines of diagnosis and treatment delivery when faced with a child experiencing unexplained loss of the use of speech and language. Research Design: Clinical report. Results: Interview revealed a family history of seizure disorder. Normal social behaviors were observed. Acoustic reflexes and otoacoustic emissions were consistent with normal peripheral auditory function. The child could not complete behavioral audiometric testing or auditory processing tests, so serial AEPs were used to examine central nervous system function. Normal auditory brainstem responses, a replicable Na and absent Pa of the middle latency responses, and abnormal slow cortical potentials suggested dysfunction of auditory processing at the cortical level. The child was referred to a neurologist, who confirmed LKS. At age 7 1/2 yr, after 2 1/2 yr of antiepileptic medications, electroencephalographic (EEG) and audiometric measures normalized. Presently, the child communicates manually with limited use of oral information. Conclusions: Audiologists often are one of the first professionals to assess children with loss of speech and language of unknown origin. Objective, noninvasive, serial AEPs are a simple and valuable addition to the central audiometric test battery when evaluating a child with speech and language regression. The inclusion of these tests will markedly increase the chance for early and accurate referral, diagnosis, and monitoring of a child with LKS which is imperative for a positive prognosis.


2012 ◽  
Vol 23 (02) ◽  
pp. 097-105 ◽  
Author(s):  
Harvey Dillon ◽  
Sharon Cameron ◽  
Helen Glyde ◽  
Wayne Wilson ◽  
Dani Tomlin

We need to rethink how we assess auditory processing disorder (APD). The current use of test batteries, while necessary and well accepted, is at risk of failing as the size of these batteries increases. To counter the statistical, fatigue, and clinical efficiency problems of large test batteries, we propose a hierarchical approach to APD assessment. This begins with an overall test of listening difficulty in which performance is measurably affected for anyone with an impaired ability to understand speech in difficult listening conditions. It proceeds with a master test battery containing a small number of single tests, each of which assesses a different group of skills necessary for understanding speech in difficult listening conditions. It ends with a detailed test battery, where the individual tests administered from this battery are only those that differentiate the skills assessed by the failed test(s) from the master test battery, so that the specific form of APD can be diagnosed. An example of how hierarchical interpretation of test results could be performed is illustrated using the Listening in Spatialized Noise—Sentences test (LiSN-S). Although consideration of what abilities fall within the realm of auditory processing should remain an important issue for research, we argue that patients will be best served by focusing on whether they have difficulty understanding speech, identifying the specific characteristics of this difficulty, and specifically remediating and/or managing those characteristics.


2021 ◽  
pp. 1-6
Author(s):  
Akshay R. Maggu ◽  
Tobias Overath

Purpose In the field of audiology, auditory processing disorder (APD) continues to be a topic of ongoing debate for clinicians and scientists alike, both in terms of theory and clinical practice. In the current viewpoint, we first lay out the main issues that are central to the controversy surrounding APD, and then suggest a framework toward their resolution. Method The current viewpoint is informed by reviewing existing studies in the field of APD to better understand the issues contributing to the controversies in APD. Results We found that, within the current definition of APD, the two main issues that make the APD diagnosis controversial are (a) comorbidity with other disorders and (b) the lack of domain specificity. These issues remain unresolved, especially with the use of the existing behavioral APD test batteries. In this viewpoint, we shed light on how they can be mitigated by implementing the administration of an objective, physiological test battery. Conclusions By administering an objective test battery, as proposed in this viewpoint, we believe that it will be possible to achieve a higher degree of specificity to the auditory domain that will not only contribute towards clinical practice but also contribute towards strengthening APD as a theoretical construct.


2019 ◽  
Vol 58 (5) ◽  
pp. 301-310 ◽  
Author(s):  
Tone Stokkereit Mattsson ◽  
Ola Lind ◽  
Turid Follestad ◽  
Kjell Grøndahl ◽  
Wayne Wilson ◽  
...  

2017 ◽  
Vol 56 (8) ◽  
pp. 538-549 ◽  
Author(s):  
Ellen Raben Pedersen ◽  
Berit Dahl-Hansen ◽  
Jakob Christensen-Dalsgaard ◽  
Christian Brandt

2021 ◽  
Vol 12 ◽  
Author(s):  
Panting Liu ◽  
Huiqin Zhu ◽  
Mingxia Chen ◽  
Qin Hong ◽  
Xia Chi

Objective: This research aimed to provide evidence for the early identification and intervention of children at risk for auditory processing disorder (APD). Electrophysiological studies on children with suspected APDs were systematically reviewed to understand the different electrophysiological characteristics of children with suspected APDs.Methods: Computerized databases such as PubMed, Cochrane, MEDLINE, Web of Science, and EMBASE were searched for retrieval of articles since the establishment of the database through May 18, 2020. Cohort, case-control, and cross-sectional studies that evaluated the literature for the electrophysiological assessment of children with suspected APD were independently reviewed by two researchers for literature screening, literature quality assessment, and data extraction. The Newcastle–Ottawa Scale and 11 entries recommended by the Agency for Healthcare Research and Quality were used to evaluate the quality of the literature.Results: In accordance with the inclusion criteria, 14 articles were included. These articles involved 7 electrophysiological testing techniques: click-evoked auditory brainstem responses, frequency-following responses, the binaural interaction component of the auditory brainstem responses, the middle-latency response, cortical auditory evoked potential, mismatch negativity, and P300. The literature quality was considered moderate.Conclusions: Auditory electrophysiological testing can be used for the characteristic identification of children with suspected APD; however, the value of various electrophysiological testing methods for screening children with suspected APD requires further study.


2021 ◽  
pp. 1-10
Author(s):  
Ronald L. Schow ◽  
Harvey Dillon ◽  
Jessica Hillam ◽  
Mary M. Whitaker ◽  
J. Anthony Seikel

Introduction There is need for greater understanding of tests used in assessing all aspects of auditory processing disorder (APD). This is important so that specific deficits can be identified and later remediated with the smallest possible test battery. The American Speech-Language-Hearing Association (ASHA) recommends five areas/domains for behavioral assessment: (a) temporal, (b) binaural (dichotic) separation/integration, (c) monaural low redundancy, (d) binaural interaction/localization/lateralization, and (e) auditory discrimination. Multiple-factor studies support the first three domains, which are most often used for APD assessment and which can be measured in a test battery normed within the United States (Multiple Auditory Processing Assessment–2 [MAPA-2]). This study was designed to determine if factored results from children would clarify whether a behavioral test (Listening in Spatialized Noise–Sentences Test [LiSN-S]) would factor within one of the first three domains or be separate, possibly within the fourth domain, binaural interaction. Method Fifty-one 8- and 9-year-olds with normal development and normal otoscopy and hearing responses bilaterally from 500 to 4000 Hz at 20 dB HL were recruited. Two sets of APD tests were administered: MAPA-2 and LiSN-S. Results Results verified the expected three-factor structure for MAPA-2. LiSN-S did not factor within one of those three, suggesting that some processes involved in the LiSN-S tasks require interactions between the two ears different from those involved in dichotic perception and thus better belong in the ASHA binaural interaction/lateralization domain. Conclusions Auditory processing abilities are sufficiently independent of each other that test batteries spanning the first three ASHA domains are not sensitive to at least some abilities in the fourth domain. This additional factor evidence is helpful. Future research should examine the utility of measuring additional factors within APD in order to achieve the most efficient and comprehensive test battery.


2006 ◽  
Vol 17 (05) ◽  
pp. 306-320 ◽  
Author(s):  
Sharon Cameron ◽  
Harvey Dillon ◽  
Philip Newall

The Listening in Spatialized Noise test (LISN)® produces a virtual three-dimensional auditory environment under headphones. Various measures assess the extent to which either spatial, vocal, or spatial and vocal cues combined increase a listener's ability to comprehend a target story in the presence of distracter sentences, without being affected by differences between participants in variables such as linguistic skills. Ten children at risk for auditory processing disorder (APD group) were assessed on the LISN, as well as a traditional APD test battery. The APD group performed significantly more poorly on all LISN measures than 48 age-matched controls. On the spatial advantage measure, the APD group achieved a mean advantage of only 3.7 dB when the distracters were spatially separated from the target by ±90°, compared to 10.0 dB for the controls—the 6.3 dB difference significant at p < 0.000001, with nine children scoring outside the normal range. The LISN was considered a promising addition to an APD test battery.


Sign in / Sign up

Export Citation Format

Share Document