scholarly journals Preimplant Hearing Aid Fittings and Aided Audibility for Pediatric Cochlear Implant Recipients

2019 ◽  
Vol 30 (08) ◽  
pp. 703-711 ◽  
Author(s):  
Alissa Nickerson ◽  
Lisa S. Davidson ◽  
Rosalie M. Uchanski

AbstractAudibility of speech for children with hearing loss (HL) depends on the degree of HL and the fitting of the hearing aids (HAs) themselves. Many studies on cochlear implant (CI) users have demonstrated that preimplant hearing is associated with postimplant outcomes, but there have been very few reports on the fitting of HAs before surgery.The aims of this study were to characterize HA fittings and aided audibility of speech for pediatric HA users with severe to profound HL and to examine the relation between preimplant aided audibility and postimplant speech perception.A descriptive/observational and correlational study. Audiologic records of pediatric CI participants involved in a larger study examining the effects of early acoustic hearing were analyzed retrospectively; when available, these records included HA verification and speech recognition performance.The CI participants were enrolled in audiology centers and oral schools for the deaf across the United States.To determine whether deviations from prescribed DSL target were significantly greater than zero, 95% confidence intervals of the mean deviation were calculated for each frequency (250, 500, 1000, 2000, and 4000 Hz). Correlational analyses were used to examine the relationship between preimplant aided Speech Intelligibility Indices (SIIs) and postimplant speech perception in noise. Correlational analyses were also used to explore the relationship between preimplant aided SIIs and demographic data. T-tests were used to compare preimplant-aided SIIs of HAs of listeners who later became users of either sequential CIs, simultaneous CIs, or bimodal devices.Preimplant fittings of HAs were generally very close to prescriptive targets, except at 4000 Hz for those HAs with active frequency-lowering processing, and preimplant SIIs, albeit low, were correlated with postimplant speech recognition performance in noise. These results suggest that aided audibility should be maximized throughout the HA trial for later speech recognition purposes.It is recommended that HA fittings be optimized to support speech audibility even when considering implantation. In addition to the age at which HA use begins, the aided audibility itself is important in determining CI candidacy and decisions regarding bimodal HA use.

2018 ◽  
Author(s):  
N Freimann ◽  
D Polterauer ◽  
S Gollwitzer ◽  
J Müller ◽  
ME Schuster

2010 ◽  
Vol 21 (07) ◽  
pp. 441-451 ◽  
Author(s):  
René H. Gifford ◽  
Lawrence J. Revit

Background: Although cochlear implant patients are achieving increasingly higher levels of performance, speech perception in noise continues to be problematic. The newest generations of implant speech processors are equipped with preprocessing and/or external accessories that are purported to improve listening in noise. Most speech perception measures in the clinical setting, however, do not provide a close approximation to real-world listening environments. Purpose: To assess speech perception for adult cochlear implant recipients in the presence of a realistic restaurant simulation generated by an eight-loudspeaker (R-SPACE™) array in order to determine whether commercially available preprocessing strategies and/or external accessories yield improved sentence recognition in noise. Research Design: Single-subject, repeated-measures design with two groups of participants: Advanced Bionics and Cochlear Corporation recipients. Study Sample: Thirty-four subjects, ranging in age from 18 to 90 yr (mean 54.5 yr), participated in this prospective study. Fourteen subjects were Advanced Bionics recipients, and 20 subjects were Cochlear Corporation recipients. Intervention: Speech reception thresholds (SRTs) in semidiffuse restaurant noise originating from an eight-loudspeaker array were assessed with the subjects' preferred listening programs as well as with the addition of either Beam™ preprocessing (Cochlear Corporation) or the T-Mic® accessory option (Advanced Bionics). Data Collection and Analysis: In Experiment 1, adaptive SRTs with the Hearing in Noise Test sentences were obtained for all 34 subjects. For Cochlear Corporation recipients, SRTs were obtained with their preferred everyday listening program as well as with the addition of Focus preprocessing. For Advanced Bionics recipients, SRTs were obtained with the integrated behind-the-ear (BTE) mic as well as with the T-Mic. Statistical analysis using a repeated-measures analysis of variance (ANOVA) evaluated the effects of the preprocessing strategy or external accessory in reducing the SRT in noise. In addition, a standard t-test was run to evaluate effectiveness across manufacturer for improving the SRT in noise. In Experiment 2, 16 of the 20 Cochlear Corporation subjects were reassessed obtaining an SRT in noise using the manufacturer-suggested “Everyday,” “Noise,” and “Focus” preprocessing strategies. A repeated-measures ANOVA was employed to assess the effects of preprocessing. Results: The primary findings were (i) both Noise and Focus preprocessing strategies (Cochlear Corporation) significantly improved the SRT in noise as compared to Everyday preprocessing, (ii) the T-Mic accessory option (Advanced Bionics) significantly improved the SRT as compared to the BTE mic, and (iii) Focus preprocessing and the T-Mic resulted in similar degrees of improvement that were not found to be significantly different from one another. Conclusion: Options available in current cochlear implant sound processors are able to significantly improve speech understanding in a realistic, semidiffuse noise with both Cochlear Corporation and Advanced Bionics systems. For Cochlear Corporation recipients, Focus preprocessing yields the best speech-recognition performance in a complex listening environment; however, it is recommended that Noise preprocessing be used as the new default for everyday listening environments to avoid the need for switching programs throughout the day. For Advanced Bionics recipients, the T-Mic offers significantly improved performance in noise and is recommended for everyday use in all listening environments.


2018 ◽  
Vol 27 (4) ◽  
pp. 581-593 ◽  
Author(s):  
Lisa Brody ◽  
Yu-Hsiang Wu ◽  
Elizabeth Stangl

Purpose The aim of this study was to compare the benefit of self-adjusted personal sound amplification products (PSAPs) to audiologist-fitted hearing aids based on speech recognition, listening effort, and sound quality in ecologically relevant test conditions to estimate real-world effectiveness. Method Twenty-five older adults with bilateral mild-to-moderate hearing loss completed the single-blinded, crossover study. Participants underwent aided testing using 3 PSAPs and a traditional hearing aid, as well as unaided testing. PSAPs were adjusted based on participant preference, whereas the hearing aid was configured using best-practice verification protocols. Audibility provided by the devices was quantified using the Speech Intelligibility Index (American National Standards Institute, 2012). Outcome measures assessing speech recognition, listening effort, and sound quality were administered in ecologically relevant laboratory conditions designed to represent real-world speech listening situations. Results All devices significantly improved Speech Intelligibility Index compared to unaided listening, with the hearing aid providing more audibility than all PSAPs. Results further revealed that, in general, the hearing aid improved speech recognition performance and reduced listening effort significantly more than all PSAPs. Few differences in sound quality were observed between devices. All PSAPs improved speech recognition and listening effort compared to unaided testing. Conclusions Hearing aids fitted using best-practice verification protocols were capable of providing more aided audibility, better speech recognition performance, and lower listening effort compared to the PSAPs tested in the current study. Differences in sound quality between the devices were minimal. However, because all PSAPs tested in the study significantly improved participants' speech recognition performance and reduced listening effort compared to unaided listening, PSAPs could serve as a budget-friendly option for those who cannot afford traditional amplification.


1990 ◽  
Vol 33 (3) ◽  
pp. 511-519 ◽  
Author(s):  
Lynn G. Spivak ◽  
Susan B. Waltzman

The speech perception abilities of 15 patients were measured preoperatively using hearing aids and postoperatively using the Nucleus 22-channel cochlear implant over a period of 1, 2, or 3 years. Analysis of mean data revealed that, although the greatest amount of improvement in speech perception scores occurred between the preoperative and 3-month poststimulation evaluation, there was also significant improvement in perception of segmental features and open-set speech recognition over the 3-year time period. When individual patient data were examined, however, it was clear that these improvements were due, in large part, to the performance of a subset of patients who had measurable open-set speech recognition abilities at the time of their 3-month, poststimulation evaluation. Subjects who used the processing scheme that included coding of F1 showed significantly more improvement over time than subjects who used the original FOF2 processing scheme exclusively. It was concluded that open-set speech recognition ability at 3 months is an important prognostic indicator of continued improvement in speech perception abilities over time.


2018 ◽  
Vol 39 (04) ◽  
pp. 414-427 ◽  
Author(s):  
Christopher Welch ◽  
Margaret Dillon ◽  
Harold Pillsbury

AbstractHearing loss affects 30 million people in the United States, and a subset of these patients have normal low-frequency hearing and ski-sloped high-frequency hearing loss. For these patients, hearing aids alone may not provide adequate benefit. Cochlear implantation alone has been utilized to improve speech perception. The addition of high-frequency electric hearing to low-frequency acoustic hearing in these patients is beneficial. Technical improvements have allowed preservation of low-frequency hearing in cochlear implant recipients, allowing for electric and acoustic stimulation in the same ear with significant improvements in speech perception, sound localization, music appreciation, and quality of life.


2013 ◽  
Vol 24 (02) ◽  
pp. 105-120 ◽  
Author(s):  
Ann E. Perreau ◽  
Ruth A. Bentler ◽  
Richard S. Tyler

Background: Frequency-lowering signal processing in hearing aids has re-emerged as an option to improve audibility of the high frequencies by expanding the input bandwidth. Few studies have investigated the usefulness of the scheme as an option for bimodal users (i.e., combined use of a cochlear implant and a contralateral hearing aid). In this study, that question was posed. Purpose: The purposes of this study were (1) to determine if frequency compression was a better bimodal option than conventional amplification and (2) to determine the impact of a frequency-compression hearing aid on speech recognition abilities. Research Design: There were two separate experiments in this study. The first experiment investigated the contribution of a frequency-compression hearing aid to contralateral cochlear implant (CI) performance for localization and speech perception in noise. The second experiment assessed monaural consonant and vowel perception in quiet using the frequency-compression and conventional hearing aid without the use of a contralateral CI or hearing aid. Study Sample: Ten subjects fitted with a cochlear implant and hearing aid participated in the first experiment. Seventeen adult subjects with a cochlear implant and hearing aid or two hearing aids participated in the second experiment. To be included, subjects had to have a history of postlingual deafness, a moderate or moderate-to-severe hearing loss, and have not worn this type of frequency-lowering hearing aid previously. Data Collection and Analysis: In the first experiment, performance using the frequency-compression and conventional hearing aids was assessed on tests of sound localization, speech perception in a background of noise, and two self-report questionnaires. In the second experiment, consonant and vowel perception in quiet was assessed monaurally for the two conditions. In both experiments, subjects alternated daily between a frequency-compression and conventional hearing aid for 2 mo. The parameters of frequency compression were set individually for each subject, and audibility was measured for the frequency compression and conventional hearing aid programs by comparing estimations of the Speech Intelligibility Index (SII) using a modified algorithm (Bentler et al, 2011). In both experiments, the outcome measures were administered following the hearing aid fitting to assess performance at baseline and after 2 mo of use. Results: For this group of subjects, the results revealed no significant difference between the frequency-compression and conventional hearing aid on tests of localization and consonant recognition. Spondee-in-noise and vowel perception scores were significantly higher with the conventional hearing aid compared to the frequency-compression hearing aid after 2 mo of use. Conclusions: These results suggest that, for the subjects in this study, frequency compression is not a better bimodal option than conventional amplification. In addition, speech perception may be negatively influenced by frequency compression because formant frequencies are too severely compressed and can no longer be distinguished.


2019 ◽  
Vol 62 (10) ◽  
pp. 3834-3850 ◽  
Author(s):  
Todd A. Ricketts ◽  
Erin M. Picou ◽  
James Shehorn ◽  
Andrew B. Dittberner

Purpose Previous evidence supports benefits of bilateral hearing aids, relative to unilateral hearing aid use, in laboratory environments using audio-only (AO) stimuli and relatively simple tasks. The purpose of this study was to evaluate bilateral hearing aid benefits in ecologically relevant laboratory settings, with and without visual cues. In addition, we evaluated the relationship between bilateral benefit and clinically viable predictive variables. Method Participants included 32 adult listeners with hearing loss ranging from mild–moderate to severe–profound. Test conditions varied by hearing aid fitting type (unilateral, bilateral) and modality (AO, audiovisual). We tested participants in complex environments that evaluated the following domains: sentence recognition, word recognition, behavioral listening effort, gross localization, and subjective ratings of spatialization. Signal-to-noise ratio was adjusted to provide similar unilateral speech recognition performance in both modalities and across procedures. Results Significant and similar bilateral benefits were measured for both modalities on all tasks except listening effort, where bilateral benefits were not identified in either modality. Predictive variables were related to bilateral benefits in some conditions. With audiovisual stimuli, increasing hearing loss, unaided speech recognition in noise, and unaided subjective spatial ability were significantly correlated with increased benefits for many outcomes. With AO stimuli, these same predictive variables were not significantly correlated with outcomes. No predictive variables were correlated with bilateral benefits for sentence recognition in either modality. Conclusions Hearing aid users can expect significant bilateral hearing aid advantages for ecologically relevant, complex laboratory tests. Although future confirmatory work is necessary, these data indicate the presence of vision strengthens the relationship between bilateral benefits and degree of hearing loss.


2021 ◽  
Vol 10 (24) ◽  
pp. 5819
Author(s):  
Charles-Alexandre Joly ◽  
Pierre Reynard ◽  
Ruben Hermann ◽  
Fabien Seldran ◽  
Stéphane Gallego ◽  
...  

Broader intra-cochlear current spread (ICCS) implies higher cochlear implant (CI) channel interactions. This study aimed to investigate the relationship between ICCS and speech intelligibility in experienced CI users. Using voltage matrices collected for impedance measurements, an individual exponential spread coefficient (ESC) was computed. Speech audiometry was performed to determine the intelligibility at 40 dB Sound Pressure Level (SPL) and the 50% speech reception threshold: I40 and SRT50 respectively. Correlations between ESC and either I40 or SRT50 were assessed. A total of 36 adults (mean age: 50 years) with more than 11 months (mean: 34 months) of CI experience were included. In the 21 subjects for whom all electrodes were active, ESC was moderately correlated with both I40 (r = −0.557, p = 0.009) and SRT50 (r = 0.569, p = 0.007). The results indicate that speech perception performance is negatively affected by the ICCS. Estimates of current spread at the closest vicinity of CI electrodes and prior to any activation of auditory neurons are indispensable to better characterize the relationship between CI stimulation and auditory perception in cochlear implantees.


2021 ◽  
pp. 1-7
Author(s):  
Meredith A. Holcomb ◽  
James R. Dornhoffer ◽  
Theodore R McRackan

<b><i>Purpose:</i></b> Cochlear implant (CI) sound-processing strategies are important to the overall success of a CI recipient. This study aimed to determine the effects of 2 Advanced Bionics (AB) CI-processing strategies, Optima-S and Optima-P, on speech recognition outcomes in adult CI users. <b><i>Methods:</i></b> A retrospective chart review was completed at a tertiary academic medical center. Seventeen post-lingually deafened adult CI users (median age = 58.6 years; age range: 23.5–78.9 years) with long-term use of a paired sound-processing strategy (Optima-P) were reprogrammed with a sequential strategy (Optima-S). Demographic data and speech recognition scores with pre- and post-intervention analyses were collected and compared with respect to the 95% confidence interval for common CI word and sentence recognition tests. <b><i>Results:</i></b> Using Optima-S sound-processing strategy, all patients (100%) performed equivalent or better on word and sentence testing than with Optima-P. More specifically, 17.6, 41.2, and 58.8% of the patients performed above the 95% confidence interval for speech recognition conditions of monosyllabic words, sentences in quiet, and sentences in noise, respectively. All patients (100%) selected Optima-S as their preferred strategy for future CI use. <b><i>Conclusion:</i></b> Speech recognition performance with Optima-S processing strategy was stable or improved compared to results with Optima-P in all tested conditions, and subjective preference of Optima-S was selected by all patients. Given these results, CI clinicians should consider programming AB CI users with Optima-S sound-processing strategy to optimize overall speech recognition performance.


Sign in / Sign up

Export Citation Format

Share Document