An Electrophysiological Measure of Binaural Hearing in Noise

2008 ◽  
Vol 19 (06) ◽  
pp. 481-495 ◽  
Author(s):  
Jeffrey Weihing ◽  
Frank E. Musiek

Background: A common complaint of patients with (central) auditory processing disorder is difficulty understanding speech in noise. Because binaural hearing improves speech understanding in compromised listening situations, quantifying this ability in different levels of noise may yield a measure with high clinical utility. Purpose: To examine binaural enhancement (BE) and binaural interaction (BI) in different levels of noise for the auditory brainstem response (ABR) and middle latency response (MLR) in a normal hearing population. Research Design: An experimental study in which subjects were exposed to a repeated measures design. Study Sample: Fifteen normal hearing female adults served as subjects. Normal hearing was assessed by pure-tone audiometry and otoacoustic emissions. Intervention: All subjects were exposed to 0, 20, and 35 dB effective masking (EM) of white noise during monotic and diotic click stimulation. Data Collection and Analysis: ABR and MLR responses were simultaneously acquired. Peak amplitudes and latencies were recorded and compared across conditions using a repeated measures analysis of variance (ANOVA). Results: For BE, ABR results showed enhancement at 0 and 20 dB EM, but not at 35 dB EM. The MLR showed BE at all noise levels, but the degree of BE decreased with increasing noise level. For BI, both the ABR and MLR showed BI at all noise levels. However, the degree of BI again decreased with increasing noise level for the MLR. Conclusions: The results demonstrate the ability to measure BE simultaneously in the ABR and MLR in up to 20 dB of EM noise and BI in up to 35 dB EM of noise. Results also suggest that ABR neural generators may respond to noise differently than MLR generators.

2013 ◽  
Vol 24 (01) ◽  
pp. 017-025 ◽  
Author(s):  
Karrie L. Recker ◽  
Brent W. Edwards

Background: Acceptable noise level (ANL) is a measure of the maximum amount of background noise that a listener is willing to “put up with” while listening to running speech. This test is unique in that it can predict with a high degree of accuracy who will be a successful hearing-aid wearer. Individuals who tolerate high levels of background noise are generally successful hearing-aid wearers, whereas individuals who do not tolerate background noise well are generally unsuccessful hearing-aid wearers. Purpose: Various studies have been unsuccessful in trying to relate ANLs to listener characteristics or other test results. Presumably, understanding the perceptual mechanism by which listeners determine their ANLs could provide an understanding of the ANL's unique predictive abilities and our current inability to correlate these results with other listener attributes or test results. As a first step in investigating this problem, the relationships between ANLs and other threshold measures where listeners adjust the signal-to-noise ratio (SNR) according to some criterion in a way similar to the ANL measure were examined. Research Design and Study Sample: Ten normal-hearing and 10 hearing-impaired individuals participated in a laboratory experiment that followed a within-subjects, repeated-measures design. Data Collection and Analysis: Participants were seated in a sound booth. Running speech and noise (eight-talker babble) were presented from a loudspeaker at 0°, 3 ft in front of the participant. Individuals adjusted either the level of the speech or the level of the background noise. Specifically, with the speech fixed at different levels (50, 63, 75, or 88 dBA), participants performed the ANL task, in which they adjusted the level of the background noise to the maximum level at which they were willing to listen while following the speech. With the noise fixed at different levels (50, 60, 70, or 80 dBA), participants adjusted the level of the speech to the minimum, preferred, or maximum levels at which they were willing to listen while following the speech. Additionally, for the minimum acceptable speech level task, each participant was tested at four participant-specific noise levels, based on his/her ANL results. To emphasize that the speech level was adjusted in these measurements, three new terms were coined: “minimum acceptable speech level” (MinASL), “preferred speech level” (PSL), and “maximum acceptable speech level” (MaxASL). Each condition was presented twice, and the results were averaged. Test order and presentation level were randomized. Hearing-impaired participants were tested in the aided condition only. Results: For most participants, as the presentation level increased, SNRs increased for the ANL test but decreased for the MinASL, PSL, and MaxASL tests. For a few participants, ANLs were similar to MinASLs. For most test conditions, the normal-hearing results were not significantly different from those of the hearing-impaired participants. Conclusions: For most participants, stimulus level affected the SNRs at which they were willing to listen. However, a subset of listeners was willing to listen at a constant SNR for the ANL and MinASL tests. Furthermore, for these individuals, ANLs and MinASLs were roughly equal, suggesting that these individuals may have used the same perceptual criterion for both tests.


2019 ◽  
pp. 229-241
Author(s):  
Anna Meehan ◽  
◽  
Andrew Lewandowski ◽  
Kayla Deru ◽  
Donald Hebert ◽  
...  

Background: Audiology clinics have many tools available to evaluate auditory and vestibular complaints. However, many tools lack established normative ranges across the life span. We conducted this study to establish reference ranges across the life span for audiology/ vestibular measures commonly used to evaluate patients with traumatic brain injury. Materials and Methods: In this repeated measures study, 75 adults, ages 18-65 years, without a history of traumatic brain injury, underwent robust auditory/vestibular evaluations three times over six months, including rotational chair, videonystagmography, computerized dynamic posturography, vestibular evoked myogenic potentials, and retinal fundoscopy. Results: Age effect was notable for transient evoked otoacoustic emissions, pure-tone audiometry, auditory brainstem response, auditory middle latency response, and auditory-steady state response at 4000 hertz (Hz). Older participants (50-65 years) were more likely to have delayed latency horizontal saccades, positional nystagmus, slowed lower-extremity motor control responses, and delayed latency ocular vestibular evoked myogenic potentials. Low to mid-frequency horizontal (0.003-4 Hz) and mid-frequency vertical (1-3 Hz) vestibulo-ocular reflex, otolith-mediated reflexes, dynamic visual acuity and balance measures were generally not influenced by age. Females had larger static subjective visual testing offset angles, longer cervical vestibular evoked myogenic potential P1 latency, faster velocity horizontal saccades, and quicker motor control latency for large backward translations than age-matched males. Conclusion: These reference ranges can be used to discern impairment within the auditory and vestibular pathway following traumatic brain injury in young to middle-aged adults.


2019 ◽  
Vol 30 (06) ◽  
pp. 451-458 ◽  
Author(s):  
Raquel M. Heacock ◽  
Amanda Pigeon ◽  
Gail Chermak ◽  
Frank Musiek ◽  
Jeffrey Weihing

AbstractPassive electrophysiological protocols, such as the middle latency response and speech auditory brainstem response, are often advocated in the objective assessment of central auditory processing disorder (CAPD). However, few established electrophysiological protocols exist for CAPD assessment that have patients participate in active tasks which more closely approximate real-world listening. To this end, the present study used a discrimination task (i.e., oddball paradigm) to measure an enhancement of the auditory late response (N1-P2) that occurs when participants direct their auditory attention toward speech arising from an unexpected spatial location.To establish whether N1-P2 is enhanced when auditory attention is directed toward an unexpected location during a two-word discrimination task. In addition, it was also investigated whether any enhancements in this response were contingent on the stimulus being counted as part of the oddball paradigm.Prospective study with a repeated measures design.Ten normal hearing adults, with an age range of 18–24 years.The N1 and P2 latencies and peak-to-peak amplitudes were recorded during a P300 paradigm. A series of repeated measures of analysis of variance and a correlation analysis was performed.There was a significant effect of stimulus location, in which words arising from the unexpected location showed a larger N1-P2 peak-to-peak amplitude and an earlier N1 latency. This effect was seen regardless of whether or not participants had to count the word total in memory.These findings suggest that spatial enhancement of the N1-P2 is a fairly robust phenomenon in normal hearing adult listeners. Additional studies are needed to determine whether this enhancement is absent or reduced in patients with CAPD.


Author(s):  
Nuriye Yıldırım Gökay ◽  
Bülent Gündüz ◽  
Fatih Söke ◽  
Recep Karamert

Purpose The effects of neurological diseases on the auditory system have been a notable issue for investigators because the auditory pathway is closely associated with neural systems. The purposes of this study are to evaluate the efferent auditory system function and hearing quality in Parkinson's disease (PD) and to compare the findings with age-matched individuals without PD to present a perspective on aging. Method The study included 35 individuals with PD (mean age of 48.50 ± 8.00 years) and 35 normal-hearing peers (mean age of 49 ± 10 years). The following tests were administered for all participants: the first section of the Speech, Spatial and Qualities of Hearing Scale; pure-tone audiometry, speech audiometry, tympanometry, and acoustic reflexes; and distortion product otoacoustic emissions (DPOAEs) and contralateral suppression of DPOAEs. SPSS Version 25 was used for statistical analyses, and values of p < .05 were considered statistically significant. Results There were no statistically significant differences in the pure-tone audiometry thresholds and DPOAE responses between the individuals with PD and their normal-hearing peers ( p = .732). However, statistically significant differences were found between the groups in suppression levels of DPOAEs and hearing quality ( p < .05). In addition, a statistically significant and positive correlation was found between the amount of suppression at some frequencies and the Speech, Spatial and Qualities of Hearing Scale scores. Conclusions This study indicates that medial olivocochlear efferent system function and the hearing quality of individuals with PD were affected adversely due to the results of PD pathophysiology on the hearing system. For optimal intervention and follow-up, tasks related to hearing quality in daily life can also be added to therapies for PD.


2008 ◽  
Vol 19 (06) ◽  
pp. 496-506 ◽  
Author(s):  
Richard H. Wilson ◽  
Rachel McArdle ◽  
Heidi Roberts

Background: So that portions of the classic Miller, Heise, and Lichten (1951) study could be replicated, new recorded versions of the words and digits were made because none of the three common monosyllabic word lists (PAL PB-50, CID W-22, and NU–6) contained the 9 monosyllabic digits (1–10, excluding 7) that were used by Miller et al. It is well established that different psychometric characteristics have been observed for different lists and even for the same materials spoken by different speakers. The decision was made to record four lists of each of the three monosyllabic word sets, the monosyllabic digits not included in the three sets of word lists, and the CID W-1 spondaic words. A professional female speaker with a General American dialect recorded the materials during four recording sessions within a 2-week interval. The recording order of the 582 words was random. Purpose: To determine—on listeners with normal hearing—the psychometric properties of the five speech materials presented in speech-spectrum noise. Research Design: A quasi-experimental, repeated-measures design was used. Study Sample: Twenty-four young adult listeners (M = 23 years) with normal pure-tone thresholds (≤20-dB HL at 250 to 8000 Hz) participated. The participants were university students who were unfamiliar with the test materials. Data Collection and Analysis: The 582 words were presented at four signal-to-noise ratios (SNRs; −7-, −2-, 3-, and 8-dB) in speech-spectrum noise fixed at 72-dB SPL. Although the main metric of interest was the 50% point on the function for each word established with the Spearman-Kärber equation (Finney, 1952), the percentage correct on each word at each SNR was evaluated. The psychometric characteristics of the PB-50, CID W-22, and NU–6 monosyllabic word lists were compared with one another, with the CID W-1 spondaic words, and with the 9 monosyllabic digits. Results: Recognition performance on the four lists within each of the three monosyllabic word materials were equivalent, ±0.4 dB. Likewise, word-recognition performance on the PB-50, W-22, and NU–6 word lists were equivalent, ±0.2 dB. The mean recognition performance at the 50% point with the 36 W-1 spondaic words was ˜6.2 dB lower than the 50% point with the monosyllabic words. Recognition performance on the monosyllabic digits was 1–2 dB better than mean performance on the monosyllabic words. Conclusions: Word-recognition performances on the three sets of materials (PB-50, CID W-22, and NU–6) were equivalent, as were the performances on the four lists that make up each of the three materials. Phonetic/phonemic balance does not appear to be an important consideration in the compilation of word-recognition lists used to evaluate the ability of listeners to understand speech.A companion paper examines the acoustic, phonetic/phonological, and lexical variables that may predict the relative ease or difficulty for which these monosyllable words were recognized in noise (McArdle and Wilson, this issue).


Author(s):  
Hannah Keppler ◽  
Sofie Degeest ◽  
Bart Vinck

Purpose The objective of the current study was to investigate the short-term test–retest reliability of contralateral suppression (CS) of click-evoked otoacoustic emissions (CEOAEs) using commercially available otoacoustic emission equipment. Method Twenty-three young normal-hearing subjects were tested. An otoscopic evaluation, admittance measures, pure-tone audiometry, measurements of CEOAEs without and with contralateral acoustic stimulation (CAS) to determine CS were performed at baseline ( n = 23), an immediate retest without and with refitting of the probe (only CS of CEOAEs; n = 11), and a retest after 1 week ( n = 23) were performed. Test–retest reliability parameters were determined on CEOAE response amplitudes without and with CAS, and on raw and normalized CS indices between baseline and the other test moments. Results Repeated-measures analysis of variance indicated no random or systematic changes in CEOAE response amplitudes without and with CAS, and in raw and normalized CS indices between the test moments. Moderate-to-high intraclass correlation coefficients with mostly high significant between-subjects variability between baseline and each consecutive test moment were found for CEOAE response amplitude without and with CAS, and for the raw and normalized CS indices. Other reliability parameters deteriorated between CEOAE response amplitudes with CAS as compared to without CAS, between baseline and retest with probe refitting, and after 1 week, as well as for frequency-specific raw and normalized CS indices as compared to global CS indices. Conclusions There was considerable variability in raw and normalized CS indices as measured using CEOAEs with CAS using commercially available otoacoustic emission equipment. More research is needed to optimize the measurement of CS of CEOAEs and to reduce influencing factors, as well as to make generalization of test–retest reliability data possible.


2015 ◽  
Vol 26 (06) ◽  
pp. 532-539 ◽  
Author(s):  
Jace Wolfe ◽  
Mila Morais ◽  
Erin Schafer

Background: Cochlear implant (CI) recipients experience difficulty understanding speech in noise. Remote-microphone technology that improves the signal-to-noise ratio is recognized as an effective means to improve speech recognition in noise; however, there are no published studies evaluating the potential benefits of a wireless, remote-microphone, digital, audio-streaming accessory device (heretofore referred to as a remote-microphone accessory) designed to deliver audio signals directly to a CI sound processor. Purpose: The objective of this study was to compare speech recognition in quiet and in noise of recipients while using their CI alone and with a remote-microphone accessory. Research Design: A two-way repeated measures design was used to evaluate performance differences obtained in quiet and in increasing levels of competing noise with the CI sound processor alone and with the sound processor paired to the remote microphone accessory. Study Sample: Sixteen users of Cochlear Nucleus 24 Freedom, CI512, and CI422 implants were included in the study. Data Collection and Analysis: Participants were evaluated in 14 conditions including use of the sound processor alone and with the remote-microphone accessory in quiet and at the following signal levels: 65 dBA speech (at the location of the participant; 85 dBA at the location of the remote microphone) in quiet and competing noise at 50, 55, 60, 65, 70, and 75 dBA noise levels. Speech recognition was evaluated in each of these conditions with one full list of AzBio sentences. Results: Speech recognition in quiet and in all competing noise levels, except the 75 dBA condition, was significantly better with use of the remote-microphone accessory compared with participants’ performance with the CI sound processor alone. As expected, in all technology conditions, performance was significantly poorer as the competing noise level increased. Conclusions: Use of a remote-microphone accessory designed for a CI sound processor provides superior speech recognition in quiet and in noise when compared with performance obtained with the CI sound processor alone.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Liang Xia ◽  
Jingchun He ◽  
Yuanyuan Sun ◽  
Yi Chen ◽  
Qiong Luo ◽  
...  

The acceptable noise level (ANL) was defined by subtracting the background noise level (BNL) from the most comfortable listening level (MCL) (ANL = MCL − BNL). This study compared the ANL obtained through different methods in 20 Chinese subjects with normal hearing. ANL was tested with Mandarin speech materials using a loudspeaker or earphones, with each subject tested by himself or by the audiologist. The presentation and response modes were as follows: (1) loudspeaker with self-adjusted noise levels using audiometer controls (LS method); (2) loudspeaker with the subject signaling the audiologist to adjust speech and noise levels (LA method); (3) earphones with self-adjusted noise levels using audiometer controls (ES method); and (4) earphones with the subject signaling the audiologist to adjust speech and noise levels (EA method). ANL was calculated from three measurements with each method. There was no significant difference in the ANL obtained through different presentation modes or response modes sound. The correlations between ANL, MCL, and BNL obtained from each two methods were significant. In conclusion, the ANL in normal-hearing Mandarin listeners may not be affected by presentation modes such as a loudspeaker or earphones nor is it affected by self-adjusted or audiologist-adjusted response modes. Earphone audiometry is as reliable as sound field audiometry and provides an easy and convenient way to measure ANL.


2013 ◽  
Vol 24 (01) ◽  
pp. 037-045 ◽  
Author(s):  
Shannon B. Palmer ◽  
Frank E. Musiek

Background: Normal temporal processing is important for the perception of speech in quiet and in difficult listening situations. Temporal resolution is commonly measured using a behavioral gap detection task, where the patient or subject must participate in the evaluation process. This is difficult to achieve with subjects who cannot reliably complete a behavioral test. However, recent research has investigated the use of evoked potential measures to evaluate gap detection. Purpose: The purpose of the current study was to record N1-P2 responses to gaps in broadband noise in normal hearing young adults. Comparisons were made of the N1 and P2 latencies, amplitudes, and morphology to different length gaps in noise in an effort to quantify the changing responses of the brain to these stimuli. It was the goal of this study to show that electrophysiological recordings can be used to evaluate temporal resolution and measure the influence of short and long gaps on the N1-P2 waveform. Research Design: This study used a repeated-measures design. All subjects completed a behavioral gap detection procedure to establish their behavioral gap detection threshold (BGDT). N1-P2 waveforms were recorded to the gap in a broadband noise. Gap durations were 20 msec, 2 msec above their BGDT, and 2 msec. These durations were chosen to represent a suprathreshold gap, a near-threshold gap, and a subthreshold gap. Study Sample: Fifteen normal-hearing young adult females were evaluated. Subjects were recruited from the local university community. Data Collection and Analysis: Latencies and amplitudes for N1 and P2 were compared across gap durations for all subjects using a repeated-measures analysis of variance. A qualitative description of responses was also included. Results: Most subjects did not display an N1-P2 response to a 2 msec gap, but all subjects had present clear evoked potential responses to 20 msec and 2+ msec gaps. Decreasing gap duration toward threshold resulted in decreasing waveform amplitude. However, N1 and P2 latencies remained stable as gap duration changed. Conclusions: N1-P2 waveforms can be elicited by gaps in noise in young normal-hearing adults. The responses are present as low as 2 msec above behavioral gap detection thresholds (BGDT). Gaps that are below BGDT do not generally evoke an electrophysiological response. These findings indicate that when a waveform is present, the gap duration is likely above their BGDT. Waveform amplitude is also a good index of gap detection, since amplitude decreases with decreasing gap duration. Future studies in this area will focus on various age groups and individuals with auditory disorders.


2018 ◽  
Vol 29 (06) ◽  
pp. 495-502 ◽  
Author(s):  
Amisha Kanji ◽  
Katijah Khoza-Shangase

AbstractThe ideal hearing screening measure is yet to be defined, with various newborn hearing screening protocols currently being recommended for different contexts. Such diverse recommendations call for further exploration and definition of feasible and context-specific protocols.The aim of the study was to establish which combinations of audiological screening measures provide both true-positive (TP) and true-negative (TN) results for risk-based hearing screening, at and across time.A longitudinal, repeated-measures design was employed.Three-hundred and twenty-five participants comprised the initial study sample. These participants comprised newborns and infants who were discharged from the neonatal intensive care unit and high care wards to “step down” wards at two public sector hospitals within an academic hospital complex.Transient evoked otoacoustic emissions (TEOAEs), distortion product otoacoustic emissions (DPOAEs), and automated auditory brainstem response (AABR) were conducted at the initial and repeat hearing screening. Diagnostic audiological assessments were also conducted. Results from combinations of audiological screening measures at the initial and repeat hearing screening were analyzed in relation to the final diagnostic outcome (n = 91). Participants were classified as presenting with an overall “refer” if the outcome for any one test was “refer.” The overall screening outcomes for different test combinations were compared using McNemar’s test for paired data. Proportions across different test combinations were compared by the z-test for proportions.Because of the absence of participants with hearing loss in the current study sample, analysis could only be conducted in relation to TN findings (specificity) and not TP findings (sensitivity). The percentage of TN findings was highest at the repeat hearing screening using any test or combination of tests when compared with findings from the initial hearing screening. TEOAE combined with AABR (TEOAE/AABR) (p < 0.0001), DPOAE combined with AABR (DPOAE/AABR) (p < 0.0001), and the combination of all three screening measures (p < 0.0001) yielded the highest percentage specificity at the repeat hearing screening when compared with the initial hearing screening.The best specificity was noted at the repeat hearing screening. Within a resource stricken context, where availability of all screening measures options may not be feasible, current study findings suggest the use of a two-stage AABR protocol or TEOAE/AABR protocol.


Sign in / Sign up

Export Citation Format

Share Document