scholarly journals Derivation of Uncertainty in Measurement and Characteristic Limits for Low Radioactive Concentration Measurement According to ISO 11929

RADIOISOTOPES ◽  
2019 ◽  
Vol 68 (9) ◽  
pp. 659-673 ◽  
Author(s):  
Hirotaka Sakai ◽  
Taiki Yoshii ◽  
Satoru Kawasaki
RADIOISOTOPES ◽  
2015 ◽  
Vol 64 (2) ◽  
pp. 133-140
Author(s):  
Masahiro TSUNOKAKE ◽  
Kouichi DOI ◽  
Hajime INOUE ◽  
Keiji KUSAMA

2015 ◽  
Vol 39 (2) ◽  
pp. 199-202
Author(s):  
Wojciech Batko ◽  
Renata Bal

Abstract The assessment of the uncertainty of measurement results, an essential problem in environmental acoustic investigations, is undertaken in the paper. An attention is drawn to the - usually omitted - problem of the verification of assumptions related to using the classic methods of the confidence intervals estimation, for the controlled measuring quantity. Especially the paper directs attention to the need of the verification of the assumption of the normal distribution of the measuring quantity set, being the base for the existing and binding procedures of the acoustic measurements assessment uncertainty. The essence of the undertaken problem concerns the binding legal and standard acts related to acoustic measurements and recommended in: 'Guide to the expression of uncertainty in measurement' (GUM) (OIML 1993), developed under the aegis of the International Bureau of Measures (BIPM). The model legitimacy of the hypothesis of the normal distribution of the measuring quantity set in acoustic measurements is discussed and supplemented by testing its likelihood on the environment acoustic results. The Jarque-Bery test based on skewness and flattening (curtosis) distribution measures was used for the analysis of results verifying the assumption. This test allows for the simultaneous analysis of the deviation from the normal distribution caused both by its skewness and flattening. The performed experiments concerned analyses of the distribution of sound levels: LD, LE, LN, LDWN, being the basic noise indicators in assessments of the environment acoustic hazards.


1996 ◽  
Vol 27 (1-2) ◽  
pp. 1-24 ◽  
Author(s):  
J. J. Gibson ◽  
T.D. Prowse ◽  
T. W. D. Edwards

Daily evaporation from a small lake in the continental Low Arctic of Canada was examined using three independent experimental methods and a simplified combination model. Mean daily lake evaporation (± variability between methods) was estimated to be 3.2+0.3−0.3 mm d−1 and 2.5+0.6−0.3 mmd−1 over fifty-day periods during two consecutive summers. Based on these results and additional class-A pan data, total thaw-season evaporation estimates of 220 mm to 320 mm were obtained, equivalent to 70% to 100% of annual precipitation. These values are 15 to 70% higher than predicted by standard evaporation maps of Canada. Our results indicate that the Priestley-Taylor model provides a good approximation of the Bowen ratio energy balance model in this setting. As expected, estimates based on mass balance are highly sensitive to uncertainty in measurement of lake inflow and outflow.


2019 ◽  
Vol 5 (0) ◽  
pp. 19-00095-19-00095
Author(s):  
Shogo FUJIMOTO ◽  
Suguru UEMURA ◽  
Nobuyuki IMANISHI ◽  
Shuichiro HIRAI

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. A. Abdelghany ◽  
A.-B. A. Mohamed ◽  
M. Tammam ◽  
Watson Kuo ◽  
H. Eleuch

AbstractWe formulate the tripartite entropic uncertainty relation and predict its lower bound in a three-qubit Heisenberg XXZ spin chain when measuring an arbitrary pair of incompatible observables on one qubit while the other two are served as quantum memories. Our study reveals that the entanglement between the nearest neighbors plays an important role in reducing the uncertainty in measurement outcomes. In addition we have shown that the Dolatkhah’s lower bound (Phys Rev A 102(5):052227, 2020) is tighter than that of Ming (Phys Rev A 102(01):012206, 2020) and their dynamics under phase decoherence depends on the choice of the observable pair. In the absence of phase decoherence, Ming’s lower bound is time-invariant regardless the chosen observable pair, while Dolatkhah’s lower bound is perfectly identical with the tripartite uncertainty with a specific choice of pair.


Sign in / Sign up

Export Citation Format

Share Document