Blind Recovery Method of Motion Blurred Image Based on Combining l1/l2 Norm with High Order and Low Order Total Variation

2018 ◽  
Vol 55 (4) ◽  
pp. 041015
Author(s):  
王灿 Wang Can ◽  
杨帆 Yang Fan ◽  
李靖 Li Jing
2011 ◽  
Vol 308-310 ◽  
pp. 2560-2564 ◽  
Author(s):  
Xiang Rong Yuan

A moving fitting method for edge detection is proposed in this work. Polynomial function is used for the curve fitting of the column of pixels near the edge. Proposed method is compared with polynomial fitting method without sub-segment. The comparison shows that even with low order polynomial, the effects of moving fitting are significantly better than that with high order polynomial fitting without sub-segment.


2019 ◽  
Vol 77 (5) ◽  
pp. 1255-1272 ◽  
Author(s):  
Jing-Hua Yang ◽  
Xi-Le Zhao ◽  
Jin-Jin Mei ◽  
Si Wang ◽  
Tian-Hui Ma ◽  
...  

2020 ◽  
Author(s):  
Nozhan Bayat ◽  
Puyan Mojabi

The standard weighted L2 norm total variation multiplicative regularization (MR) term originally developed for microwave imaging algorithms is modified to take into account<br>structural prior information, also known as spatial priors (SP), about the object being imaged. This modification adds one extra term to the integrand of the standard MR, thus, being referred to as an augmented MR (AMR). The main advantage of the proposed approach is that it requires a minimal change to the existing microwave imaging algorithms that are already equipped with the MR. Using two experimental data sets, it is shown that the proposed AMR (i) can handle partial SP, and (ii) can, to some extent, enhance the quantitative accuracy achievable from<br>microwave imaging.


2020 ◽  
pp. 146808742093694
Author(s):  
Armin Norouzi ◽  
Masoud Aliramezani ◽  
Charles Robert Koch

A correlation-based model order reduction algorithm is developed using support vector machine to model [Formula: see text] emission and break mean effective pressure of a medium-duty diesel engine. The support vector machine–based model order reduction algorithm is used to reduce the number of features of a 34-feature full-order model by evaluating the regression performance of the support vector machine–based model. Then, the support vector machine–based model order reduction algorithm is used to reduce the number of features of the full-order model. Two models for [Formula: see text] emission and break mean effective pressure are developed via model order reduction, one complex model with high accuracy, called high-order model, and the other with an acceptable accuracy and a simple structure, called low-order model. The high-order model has 29 features for [Formula: see text] and 20 features for break mean effective pressure, while the low-order model has nine features for [Formula: see text] and six features for break mean effective pressure. Then, the steady-state low-order model and high-order model are implemented in a nonlinear control-oriented model. To verify the accuracy of nonlinear control-oriented model, a fast response electrochemical [Formula: see text] sensor is used to experimentally study the engine transient [Formula: see text] emissions. The high-order model and low-order model support vector machine models of [Formula: see text] and break mean effective pressure are compared to a conventional artificial neural network with one hidden layer. The results illustrate that the developed support vector machine model has shorter training times (5–14 times faster) and higher accuracy especially for test data compared to the artificial neural network model. A control-oriented model is then developed to predict the dynamic behavior of the system. Finally, the performance of the low-order model and high-order model is evaluated for different rising and falling input transients at four different engine speeds. The transient test results validate the high accuracy of the high-order model and the acceptable accuracy of low-order model for both [Formula: see text] and break mean effective pressure. The high-order model is proposed as an accurate virtual plant while the low-order model is suitable for model-based controller design.


2012 ◽  
Author(s):  
Jiansheng Yang ◽  
Hengyong Yu ◽  
Wenxiang Cong ◽  
Ming Jiang ◽  
Ge Wang

2018 ◽  
Vol 35 (1) ◽  
pp. 323-335 ◽  
Author(s):  
Jeremy Ims ◽  
Z. J. Wang
Keyword(s):  

Author(s):  
Changping Chen ◽  
Liming Dai

Truncated conical shell is an important structure that has been widely applied in many engineering fields. The present paper studies the internal dynamic properties of a truncated rotary conical shell with considerations of intercoupling the high and low order modals by utilizing Harmonic Balance Method. To disclosure the detailed intercoupling characteristics of high order modal and low order modal of the system, a truncated shallow shell is studied and the internal response properties of the system is investigated by using the Multiple Scale Method. Abundant dynamic characteristics are found in the research of this paper. It is found in the research of the paper that the high-order modals of rotating conical shells have significant effects to the amplitude and frequency of the shells.


Sign in / Sign up

Export Citation Format

Share Document