Study of Plasmon frequency at the surface of LiH in various medium.

2021 ◽  
Vol 8 (5) ◽  
Keyword(s):  
2020 ◽  
Author(s):  
Justus Bohn ◽  
Ting-Shan Luk ◽  
Craig Tollerton ◽  
Sam Hutchins ◽  
Igal Brener ◽  
...  

Abstract Nonlinear optical devices and their implementation into modern nanophotonic architectures are constrained by their usually moderate nonlinear response. Recently, epsilon-near-zero (ENZ) materials have been found to have a strong optical nonlinearity, which can be enhanced through the use of cavities or nano-structuring. Here, we study the pump dependent properties of the plasmon resonance in the ENZ region in a thin layer of thin indium tin oxide (ITO). Exciting this mode using the Kretschmann-Raether configuration, we study reflection switching properties of a 60nm layer close to the resonant plasmon frequency. We demonstrate the thermal switching mechanism, which results in a shift in the plasmon resonance frequency of 20THz for a TM pump intensity of 75GW/cm2. For degenerate pump and probe frequencies, we highlight an additional coherent contribution, not previously isolated in ENZ nonlinear optics studies, which leads to an overall pump induced change in reflection from 1% to 45%.


2021 ◽  
Author(s):  
Xue-fang Hu ◽  
Xiang-yue Zhao ◽  
Yin-wei Gu ◽  
Shu-ping Jin ◽  
Yi-ping Cui ◽  
...  

Abstract As a strong couple mode of photon and electron collective oscillation, the movement of an electron can affect the collective plasmon behaviors efficiently. In this paper, we proposed a novel method for modulating the plasmon by directly controlling the movement of the electron but independent of the properties of the medium. This method is demonstrated by a hybrid graphene-dielectric-interdigital electrode structure in the mid-infrared range. It is possible to regulate the confinement of the graphene carrier and stimulate the plasmon in real-time by using the potential wells created by interdigital electrodes. Furthermore, the plasmon frequency can also be modulated utilizing changing the confined area and the density of the carrier. As a result. the frequency has been tuned over a range of ~ 33 cm−1 by applying voltage, and the maximum extinction ratio we measured is 8%. Due to the movement of the electron can also be driven optically, these findings may define a new approach to the all-optical modulator with low pump power.


MRS Advances ◽  
2019 ◽  
Vol 4 (5-6) ◽  
pp. 285-292
Author(s):  
L. I. Juárez-Amador ◽  
M. Galván-Arellano ◽  
Y. M. Hernández-Rodríguez ◽  
J. A. Andraca-Adame ◽  
G. Romero-Paredes ◽  
...  

AbstractThis work reports by the first time a method to control the geometry of Ga2O3 films nanocrystallites at 350 °C. The formation of controlled shaped nano-crystallites of γ-Ga2O3 from amorphous Ga2O3 films grown by RF-Sputtering at room temperature driven by nano-layers of group IB metals (Cu, Ag or Au) is studied. The reported results can be explained by the role of subsurface metal nano-layers and the non-equilibrium nature of the sputtering processes. To study the effects on the surface structure and their optical properties arrays of amorphous-Ga2O3/IB-metal/amorphous-Ga2O3 were annealed in dry N2 atmosphere at 350 °C by 50, 100 and 150 min. The experimental results can be explained by the evolution of the amorphous character of the films amorphous films towards the nanocrystalline γ-Ga2O3 phase driven by the metal nano-layer seed nature. As the annealing time was increased the transition from amorphous-Ga2O3 to the nanocrystalline γ-Ga2O3 phase was detected by X-ray diffraction analysis. The transition to the nanocrystalline γ-Ga2O3 is demonstrated by the formation of octahedral, triangle and ball shape nanocrystallites with sizes of ∼5 to 50 nm according to FE-SEM analysis. The influence of the metal nano-layer is clearly seen by the shift of the plasmon frequency resonance produced by the Ga2O3/IB-metal/Ga2O3 arrays in the region from 400 to 600 nm caused by the modification of the interface Ga2O3/IB-metal produced by the applied annealing stages.


Sign in / Sign up

Export Citation Format

Share Document