scholarly journals High-definition Fourier Transform Infrared (FT-IR) Spectroscopic Imaging of Human Tissue Sections towards Improving Pathology

Author(s):  
Hari Sreedhar ◽  
Vishal K. Varma ◽  
Peter L. Nguyen ◽  
Bennett Davidson ◽  
Sanjeev Akkina ◽  
...  
The Analyst ◽  
2017 ◽  
Vol 142 (13) ◽  
pp. 2475-2483 ◽  
Author(s):  
H. Shinzawa ◽  
B. Turner ◽  
J. Mizukado ◽  
S. G. Kazarian

FT-IR spectra of a HEK cell were analyzed with 2D disrelation mapping to reveal molecular states of water and protein hydration.


2019 ◽  
Vol 73 (5) ◽  
pp. 556-564 ◽  
Author(s):  
Mahsa Lotfollahi ◽  
Sebastian Berisha ◽  
Davar Daeinejad ◽  
David Mayerich

Histological stains, such as hematoxylin and eosin (H&E), are routinely used in clinical diagnosis and research. While these labels offer a high degree of specificity, throughput is limited by the need for multiple samples. Traditional histology stains, such as immunohistochemical labels, also rely only on protein expression and cannot quantify small molecules and metabolites that may aid in diagnosis. Finally, chemical stains and dyes permanently alter the tissue, making downstream analysis impossible. Fourier transform infrared (FT-IR) spectroscopic imaging has shown promise for label-free characterization of important tissue phenotypes and can bypass the need for many chemical labels. Fourier transform infrared classification commonly leverages supervised learning, requiring human annotation that is tedious and prone to errors. One alternative is digital staining, which leverages machine learning to map IR spectra to a corresponding chemical stain. This replaces human annotation with computer-aided alignment. Previous work relies on alignment of adjacent serial tissue sections. Since the tissue samples are not identical at the cellular level, this technique cannot be applied to high-definition FT-IR images. In this paper, we demonstrate that cellular-level mapping can be accomplished using identical samples for both FT-IR and chemical labels. In addition, higher-resolution results can be achieved using a deep convolutional neural network that integrates spatial and spectral features.


2002 ◽  
Vol 56 (8) ◽  
pp. 965-969 ◽  
Author(s):  
Scott W. Huffman ◽  
Rohit Bhargava ◽  
Ira W. Levin

We describe a novel, generalized data acquisition sequence to allow rapid-scan Fourier transform infrared (FT-IR) spectroscopic imaging using focal plane array (FPA) detectors. This technique derives its applicability from the reproducible performance of modern FT-IR instrumentation and the availability of FPAs with simultaneous, full array acquisition, or snapshot electronics. Instead of sampling the entire interferogram in one mirror sweep over a predetermined retardation, as in traditional continuous-scanning techniques, the modulated light from the interferometer is recorded over several mirror sweeps. The FPA detector is synchronized for data acquisition after a specified delay with respect to the initiation of the mirror motion to provide a highly under-sampled interferogram. By incorporating appropriate delays in subsequent interferometer mirror scans, the entire interferogram is sampled and reconstructed. The signal-to-noise ratios (SNR) of the resulting interferograms are analyzed and are compared with step-scan spectroscopic imaging data.


2003 ◽  
Vol 57 (4) ◽  
pp. 357-366 ◽  
Author(s):  
Rohit Bhargava ◽  
Ira W. Levin

Fourier transform infrared (FT-IR) imaging allows simultaneous spectral characterization of large spatial areas due to its multichannel detection advantage. The acquisition of large amounts of data in the multichannel configuration results, however, in a poor temporal resolution of sequentially acquired data sets, which limits the examination of dynamic processes to processes that have characteristic time scales of the order of minutes. Here, we introduce the concept and instrumental details of a time-resolved infrared spectroscopic imaging modality that permits the examination of repetitive dynamic processes whose half-lives are of the order of milliseconds. As an illustration of this implementation of step-scan FT-IR imaging, we examine the molecular responses to external electric-field perturbations of a microscopically heterogeneous polymer–liquid crystal composite. Analysis of the spectroscopic data using conventional univariate and generalized two-dimensional (2D) correlation methods emphasizes an additional capability for accessing of simultaneous spatial and temporal chemical measurements of molecular dynamic processes.


2019 ◽  
Vol 73 (7) ◽  
pp. 767-773
Author(s):  
Ryan C. Ogliore ◽  
Cosette Dwyer ◽  
Michael J. Krawczynski ◽  
Hélène Couvy ◽  
Max Eisele ◽  
...  

We report an infrared (IR) spectroscopic technique to detect quartz grains with large isotope anomalies. We synthesized isotopically doped quartz and used Fourier transform infrared spectroscopy (FT-IR) in two different instruments: a traditional far-field instrument and a neaSpec nanoFT-IR, to quantify the shift in the peak of the Si–O stretch near 780 cm−1 as a function of isotope composition, and the uncertainty in this shift. From these measurements, we estimated the minimum detectable isotope anomaly using FT-IR. The described technique can be used to nondestructively detect very small (30 nm) presolar grains. In particular, supernova grains, which can have very large isotope anomalies, are detectable by this method.


Sign in / Sign up

Export Citation Format

Share Document