scholarly journals Improve Linear Quadratic Regulator by Particle Swarm Optimization Algorithms for Two Wheeled Self Balancing Mobile robot

2017 ◽  
Vol 13 (2) ◽  
pp. 173-179
Author(s):  
Ekhlas Karam ◽  
Noor Mjeed

The aim of this paper is to suggest a methodical smooth control method for improving the stability of two wheeled self-balancing robot under effect disturbance. To promote the stability of the robot, the design of linear quadratic regulator using particle swarm optimization (PSO) method and adaptive particle swarm optimization (APSO). The computation of optimal multivariable feedback control is traditionally by LQR approach by Riccati equation. Regrettably, the method as yet has a trial and error approach when selecting parameters, particularly tuning the Q and R elements of the weight matrices. Therefore, an intelligent numerical method to solve this problem is suggested by depending PSO and APSO algorithm. To appraise the effectiveness of the suggested method, The Simulation result displays that the numerical method makes the system stable and minimizes processing time.

2020 ◽  
Vol 9 (4) ◽  
pp. 1357-1363
Author(s):  
Ahmad Fahmi ◽  
Marizan Sulaiman ◽  
Indrazno Siradjuddin ◽  
I Made Wirawan ◽  
Abdul Syukor Mohamad Jaya ◽  
...  

The Segway Human Transport (HT) robot, it is dynamical self-balancing robot type. The stability control is an important thing for the Segway robot. It is an indisputable fact that Segway robot is a natural instability framework robot. The case study of the Segway robot focuses on running balance control systems. The roll, pitch, and yaw balance of this robot are obtained by estimating the Kalman Filter with a combination of the pole placement and the Linear Quadratic Regulator (LQR) control method. In our system configuration, the mathematical model of the robot will be proved by Matlab Simulink by modelling of the stabilizing control system of all state variable input. Furthermore, the implementation of this system modelled to the real-time test of the Segway robot. The expected result is by substitute the known parameters from Gyro, Accelero and both rotary encoder to initial stabilize control function, the system will respond to the zero input curve. The coordinate units of displacement response and inclination response pictures are the same. As our expected, the response of the system can reach the zero point position. 


2020 ◽  
Vol 23 (1) ◽  
pp. 45-50
Author(s):  
Hazem Ali ◽  
Azhar Jabbar Abdulridha ◽  
Rawaa Khaleel ◽  
Kareem Kareem A. Hussein

In this work, the design procedure of a hybrid robust controller for crane system is presented. The proposed hybrid controller combines the linear quadratic regulator (LQR) properties with the sliding mode control (SMC) to obtain an optimal and robust LQR/SMC controller. The crane system which is represented by pendulum and cart is used to verify the effectiveness of the proposed controller. The crane system is considered one of the highly nonlinear and uncertain systems in addition to the under-actuating properties. The parameters of the proposed LQR/SMC are selected using Particle Swarm Optimization (PSO) method. The results show that the proposed LQR/SMC controller can achieve a better performance if only SMC controller is used. The robustness of the proposed controller is examined by considering a  variation in system parameters with applying an external disturbance input. Finally, the superiority of the proposed LQR/SMC controller over the SMC controller is shown in this work.


2012 ◽  
Author(s):  
Arfah Syahida Mohd Nor ◽  
Hazlina Selamat ◽  
Ahmad Jais Alimin

This paper presents the design of an active suspension control of a two–axle railway vehicle using an optimized linear quadratic regulator. The control objective is to minimize the lateral displacement and yaw angle of the wheelsets when the vehicle travels on straight and curved tracks with lateral irregularities. In choosing the optimum weighting matrices for the LQR, the Particle Swarm Optimization (PSO) method has been applied and the results of the controller performance with weighting matrices chosen using this method is compared with the commonly used, trial and error method. The performance of the passive and active suspension has also been compared. The results show that the active suspension system performs better than the passive suspension system. For the active suspension, the LQR employing the PSO method in choosing the weighting matrices provides a better control performance and a more systematic approach compared to the trial and error method. Key words: active suspension control, two–axle railway vehicle, linear quadratic regulator, particle swarm optimization


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Jian Fang

The dynamics model is established in view of the self-designed, two-wheeled, and self-balancing robot. This paper uses the particle swarm algorithm to optimize the parameter matrix of LQR controller based on the LQR control method to make the two-wheeled and self-balancing robot realize the stable control and reduce the overshoot amount and the oscillation frequency of the system at the same time. The simulation experiments prove that the LQR controller improves the system stability, obtains the good control effect, and has higher application value through using the particle swarm optimization algorithm.


2018 ◽  
Vol 19 (1) ◽  
pp. 109
Author(s):  
Gaurav Kumar ◽  
Ashok Kumar ◽  
Ravi S. Jakka

In the linear quadratic regulator (LQR) problem, the generation of control force depends on the components of the control weighting matrix R. The value of R is determined while designing the controller and remains the same later. Amid a seismic event, the responses of the structure may change depending the quasi-resonance occurring between the structure and the earthquake signal. In this situation, it is essential to update the value of R for conventional LQR controller to get optimum control force to mitigate the vibrations due to the earthquake. Further, the constant value of the weighting matrix R leads to the wastage of the resources using larger force unnecessarily where the structural responses are smaller. Therefore, in the quest of utilizing the resources wisely and to determine the optimized value of the control weighting matrix R for LQR controller in real time, a maximum predominant period τpmax and particle swarm optimization-based method is presented here. This method comprises of four different algorithms: particle swarm optimization (PSO), maximum predominant period approach τpmax to find the dominant frequency for each window, clipped control algorithm (CO) and LQR controller. The modified Bouc-Wen phenomenological model is taken to recognize the nonlinearities in the MR damper. The assessment of the advised method is done on a three-story structure having a MR damper at ground floor subjected to three different near fault historical earthquake time histories. The outcomes are equated with those of simple conventional LQR. The results establish that the advised methodology is more effective than conventional LQR controllers in reducing inter-story drift, relative displacement, and acceleration response.


2019 ◽  
Vol 25 (6) ◽  
pp. 495-517
Author(s):  
Sarah Jabbar ◽  
Farzad Hejazi ◽  
Ammar N. Hanoon ◽  
Rizal S. M. Rashid

Advances in the telecommunication and broadcasting sectors have increased the need for networking equipment of communication towers. Slender structures, such as towers, are sensitive to dynamic loads, such as vibration forces. Therefore, the stability and reliability performance of towers can be maintained effectively through the prompt detection, localization, and quantification of structural damages by obtaining the dynamic frequency response of towers. However, frequency analysis for damaged structures requires long computational procedures and is difficult to perform because of the damages in real structures, particularly in towers. Therefore, this study proposed a correlation factor that can identify the relationship between frequenciesunderhealthy and damaged conditions of ultra high performance fiber-reinforced concrete (UHPFRC) communication towers using particle swarm optimization. The finite element method was implemented to simulate three UHPFRC communication towers, and an experimental test was conducted to validate and verify the developed correlation factor


Sign in / Sign up

Export Citation Format

Share Document