scholarly journals Proposed Method for Optimizing Fuzzy linear programming Problems by using Two-Phase Technique

2010 ◽  
Vol 6 (2) ◽  
pp. 89-96
Author(s):  
Zaki Towfik ◽  
Sabiha Jawad

Fuzzy linear programming (FLP ) is an application of fuzzy set theory in linear decision making problems and most of these problems are related to linear programming contains fuzzy constrains or crisp objectives function or contains crisp constrains with fuzzy objectives function, which called fuzzy linear programming (FLP) with triplet fuzzy numbers consist a hybrid fuzzy. The crisp constrains used in the problems of types (= or ≥) with a proposed optimization fuzzy objectives and fuzzy constrains. In this paper proposed method for solving fuzzy linear programming problem by using Two-phase technique to solve the problem and to determine the optima crisp objectives.

Author(s):  
Ludovic Liétard ◽  
Daniel Rocacher

This chapter is devoted to the evaluation of quantified statements which can be found in many applications as decision making, expert systems, or flexible querying of relational databases using fuzzy set theory. Its contribution is to introduce the main techniques to evaluate such statements and to propose a new theoretical background for the evaluation of quantified statements of type “Q X are A” and “Q B X are A.” In this context, quantified statements are interpreted using an arithmetic on gradual numbers from Nf, Zf, and Qf. It is shown that the context of fuzzy numbers provides a framework to unify previous approaches and can be the base for the definition of new approaches.


1990 ◽  
Vol 20 (1) ◽  
pp. 33-55 ◽  
Author(s):  
Jean Lemaire

AbstractFuzzy set theory is a recently developed field of mathematics, that introduces sets of objects whose boundaries are not sharply defined. Whereas in ordinary Boolean algebra an element is either contained or not contained in a given set, in fuzzy set theory the transition between membership and non-membership is gradual. The theory aims at modelizing situations described in vague or imprecise terms, or situations that are too complex or ill-defined to be analysed by conventional methods. This paper aims at presenting the basic concepts of the theory in an insurance framework. First the basic definitions of fuzzy logic are presented, and applied to provide a flexible definition of a “preferred policyholder” in life insurance. Next, fuzzy decision-making procedures are illustrated by a reinsurance application, and the theory of fuzzy numbers is extended to define fuzzy insurance premiums.


2021 ◽  
pp. 1-14
Author(s):  
Manisha Malik ◽  
S. K. Gupta ◽  
I. Ahmad

In many real-world problems, one may encounter uncertainty in the input data. The fuzzy set theory fits well to handle such situations. However, it is not always possible to determine with full satisfaction the membership and non-membership degrees associated with an element of the fuzzy set. The intuitionistic fuzzy sets play a key role in dealing with the hesitation factor along-with the uncertainity involved in the problem and hence, provides more flexibility in the decision-making process. In this article, we introduce a new ordering on the set of intuitionistic fuzzy numbers and propose a simple approach for solving the fully intuitionistic fuzzy linear programming problems with mixed constraints and unrestricted variables where the parameters and decision variables of the problem are represented by intuitionistic fuzzy numbers. The proposed method converts the problem into a crisp non-linear programming problem and further finds the intuitionistic fuzzy optimal solution to the problem. Some of the key significance of the proposed study are also pointed out along-with the limitations of the existing studies. The approach is illustrated step-by-step with the help of a numerical example and further, a production planning problem is also demonstrated to show the applicability of the study in practical situations. Finally, the efficiency of the proposed algorithm is analyzed with the existing studies based on various computational parameters.


Author(s):  
JAMES J. BUCKLEY ◽  
THOMAS FEURING ◽  
YOICHI HAYASHI

In this paper we wish to solve multi-objective fully fuzzified linear programming problems which are multi-objective linear programming problems where all the parameters and variables are fuzzy numbers. We change this problem into a single objective fuzzy linear programming problem and then show that our solution procedure can be used to explore the whole undominated set. An evolutionary algorithm is then designed to generate undominated solutions. An example is presented showing our evolutionary algorithm solution.


2021 ◽  
Vol 2021 ◽  
pp. 1-36
Author(s):  
Muhammad Athar Mehmood ◽  
Muhammad Akram ◽  
Majed G. Alharbi ◽  
Shahida Bashir

In this study, we present a technique to solve LR -type fully bipolar fuzzy linear programming problems (FBFLPPs) with equality constraints. We define LR -type bipolar fuzzy numbers and their arithmetic operations. We discuss multiplication of LR -type bipolar fuzzy numbers. Furthermore, we develop a method to solve LR -type FBFLPPs with equality constraints involving LR -type bipolar fuzzy numbers as parameters and variables. Moreover, we define ranking for LR -type bipolar fuzzy numbers which transform the LR -type FBFLPP into a crisp linear programming problem. Finally, we consider numerical examples to illustrate the proposed method.


2005 ◽  
Vol 13 (1) ◽  
pp. 23-56 ◽  
Author(s):  
Badredine Arfi

In this article I use linguistic fuzzy-set theory to analyze the process of decision making in politics. I first introduce a number of relevant elements of (numerical and linguistic) fuzzy-set theory that are needed to understand the terminology as well as to grasp the scope and depth of the approach. I then explicate a linguistic fuzzy-set approach (LFSA) to the process of decision making under conditions in which the decision makers are required to simultaneously satisfy multiple criteria. The LFSA approach is illustrated through a running (hypothetical) example of a situation in which state leaders need to decide how to combine trust and power to make a choice on security alignment.


2016 ◽  
Vol 33 (06) ◽  
pp. 1650047 ◽  
Author(s):  
Sanjiv Kumar ◽  
Ritika Chopra ◽  
Ratnesh R. Saxena

The aim of this paper is to develop an effective method for solving matrix game with payoffs of trapezoidal fuzzy numbers (TrFNs). The method always assures that players’ gain-floor and loss-ceiling have a common TrFN-type fuzzy value and hereby any matrix game with payoffs of TrFNs has a TrFN-type fuzzy value. The matrix game is first converted to a fuzzy linear programming problem, which is converted to three different optimization problems, which are then solved to get the optimum value of the game. The proposed method has an edge over other method as this focuses only on matrix games with payoff element as symmetric trapezoidal fuzzy number, which might not always be the case. A numerical example is given to illustrate the method.


Author(s):  
Rasha Jalal

The aim of this paper is to suggest a solution procedure to fractional programming problem based on new ranking function (RF) with triangular fuzzy number (TFN) based on alpha cuts sets of fuzzy numbers. In the present procedure the linear fractional programming (LFP) problems is converted into linear programming problems. We concentrate on linear programming problem problems in which the coefficients of objective function are fuzzy numbers, the right- hand side are fuzzy numbers too, then solving these linear programming problems by using a new ranking function. The obtained linear programming problem can be solved using win QSB program (simplex method) which yields an optimal solution of the linear fractional programming problem. Illustrated examples and comparisons with previous approaches are included to evince the feasibility of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document