scholarly journals Stability Analysis of Unsteady Hybrid Nanofluid Flow Past a Permeable Stretching/Shrinking Cylinder

Author(s):  
Nurul Amira Zainal ◽  
Roslinda Nazar ◽  
Kohilavani Naganthran ◽  
Ioan Pop

The study of boundary layer flow has gained considerable interest owing to its extensive engineering applications. Thus, this numerical study aims to investigate the stability analysis of unsteady flow in the hybrid Al2O3-Cu/H2O nanofluid past a shrinking permeable cylinder. The impacts of suction and unsteadiness parameters are considered in this study. The partial differential equations are converted into a system of nonlinear ordinary differential equations by selecting suitable similarity transformation and solved using the bvp4c code in the MATLAB program. The findings revealed that the existence of dual solutions is visible. The skin friction coefficient and the local Nusselt numbers of Al2O3-Cu/H2O increase with the inclusion of the suction parameter. The presence of the unsteadiness parameter actively promotes heat transfer degradation on the shrinking cylinder. Stability analysis indicates that a stable and physically realizable solution appeared in the first solution, whereas the second solution is unstable.

Author(s):  
Yap Bing Kho ◽  
Rahimah Jusoh ◽  
Mohd Zuki Salleh ◽  
Muhammad Khairul Anuar Mohamed ◽  
Zulkhibri Ismail ◽  
...  

The effects of viscous dissipation on the boundary layer flow of hybrid nanofluids have been investigated. This study presents the mathematical modelling of steady two dimensional boundary layer flow of Cu-TiO2 hybrid nanofluid. In this research, the surface of the model is stretched and shrunk at the specific values of stretching/shrinking parameter. The governing partial differential equations of the hybrid nanofluid are reduced to the ordinary differential equations with the employment of the appropriate similarity transformations. Then, Matlab software is used to generate the numerical and graphical results by implementing the bvp4c function. Subsequently, dual solutions are acquired through the exact guessing values. It is observed that the second solution adhere to less stableness than first solution after performing the stability analysis test. The existence of viscous dissipation in this model is dramatically brought down the rate of heat transfer. Besides, the effects of the suction and nanoparticles concentration also have been highlighted. An increment in the suction parameter enhances the magnitude of the reduced skin friction coefficient while the augmentation of concentration of copper and titanium oxide nanoparticles show different modes.


2021 ◽  
Vol 50 (12) ◽  
pp. 3753-3764
Author(s):  
Nurul Amira Zainal ◽  
Roslinda Nazar ◽  
Kohilavani Naganthran ◽  
Ioan Pop

Theoretical investigations of unsteady boundary layer flow gain interest due to its relatability to practical settings. Thus, this study proposes a unique mathematical model of the unsteady flow and heat transfer in hybrid nanofluid past a permeable shrinking slender cylinder. The suitable form of similarity transformations is adapted to simplify the complex partial differential equations into a solvable form of ordinary differential equations. A built-in bvp4c function in MATLAB software is exercised to elucidate the numerical analysis for certain concerning parameters, including the unsteadiness and curvature parameters. The bvp4c procedure is excellent in providing more than one solution once sufficient predictions are visible. The present analysis further observed dual solutions that exist in the system of equations. Notable findings showed that by increasing the nanoparticles volume fraction, the skin friction coefficient increases in accordance with the heat transfer rate. In contrast, the decline of the unsteadiness parameter demonstrates a downward trend toward the heat transfer performance.


2016 ◽  
Vol 26 (7) ◽  
pp. 2283-2294 ◽  
Author(s):  
Ioan Pop ◽  
Natalia C. Roşca ◽  
Alin V. Roşca

Purpose The purpose of this paper is to reinvestigate the problem of multiple similarity solutions of the two-dimensional magnetohydrodynamic boundary-layer flow of an incompressible, viscous and electrically conducting fluid past a stretching/shrinking permeable surface studied by Aly et al. (2007). Design/methodology/approach The transformed ordinary (similarity) differential equation was solved numerically using the function bvp4c from MATLAB. The relative tolerance was set to 10^(−10). Findings Dual solutions were found and a stability analysis was performed to show which solutions are stable and which are not stable. On the other hand, Aly et al. (2007) have shown that for each value of the power index and magnetic parameter in the range and for any specific values of the stretching/shrinking parameter and suction parameter the problem has only a solution. Originality/value The paper describes how multiple (dual) solutions for the flow reversals were obtained. The stability analysis has shown that the lower solution branches are unstable, while the upper solution branches are stable.


2020 ◽  
Vol 50 (4) ◽  
pp. 247-253
Author(s):  
Debasish Dey ◽  
Rupjyoti Borah

Boundary layer flow with heat and mass transfers over a stretching/shrinking cylinder has been investigated. The governing partial differential equations are converted into a set of ordinary differential equations using suitable similarity transformations and have been solved numerically using MATLAB built in bvp4c solver technique. The numerical results are graphically discussed in the form of velocity, temperature and concentration distributions for various values of flow parameters. Numerical results show that dual solutions are possible in specific range of the suction parameter. A stability analysis is executed to obtain which solution is linearly stable and physically realizable.


2006 ◽  
Vol 11 (4) ◽  
pp. 331-343 ◽  
Author(s):  
M. S. Alam ◽  
M. M. Rahman ◽  
M. A. Samad

The problem of combined free-forced convection and mass transfer flow over a vertical porous flat plate, in presence of heat generation and thermaldiffusion, is studied numerically. The non-linear partial differential equations and their boundary conditions, describing the problem under consideration, are transformed into a system of ordinary differential equations by using usual similarity transformations. This system is solved numerically by applying Nachtsheim-Swigert shooting iteration technique together with Runge-Kutta sixth order integration scheme. The effects of suction parameter, heat generation parameter and Soret number are examined on the flow field of a hydrogen-air mixture as a non-chemical reacting fluid pair. The analysis of the obtained results showed that the flow field is significantly influenced by these parameters.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
H. Saberi Najafi ◽  
A. Refahi Sheikhani ◽  
A. Ansari

We analyze the stability of three classes of distributed order fractional differential equations (DOFDEs) with respect to the nonnegative density function. In this sense, we discover a robust stability condition for these systems based on characteristic function and new inertia concept of a matrix with respect to the density function. Moreover, we check the stability of a distributed order fractional WINDMI system to illustrate the validity of proposed procedure.


2001 ◽  
Author(s):  
Davide Valtorta ◽  
Khaled E. Zaazaa ◽  
Ahmed A. Shabana ◽  
Jalil R. Sany

Abstract The lateral stability of railroad vehicles travelling on tangent tracks is one of the important problems that has been the subject of extensive research since the nineteenth century. Early detailed studies of this problem in the twentieth century are the work of Carter and Rocard on the stability of locomotives. The linear theory for the lateral stability analysis has been extensively used in the past and can give good results under certain operating conditions. In this paper, the results obtained using a linear stability analysis are compared with the results obtained using a general nonlinear multibody methodology. In the linear stability analysis, the sources of the instability are investigated using Liapunov’s linear theory and the eigenvalue analysis for a simple wheelset model on a tangent track. The effects of the stiffness of the primary and secondary suspensions on the stability results are investigated. The results obtained for the simple model using the linear approach are compared with the results obtained using a new nonlinear multibody based constrained wheel/rail contact formulation. This comparative numerical study can be used to validate the use of the constrained wheel/rail contact formulation in the study of lateral stability. Similar studies can be used in the future to define the limitations of the linear theory under general operating conditions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Golam Mortuja Sarkar ◽  
Suman Sarkar ◽  
Bikash Sahoo

Purpose This paper aims to theoretically and numerically investigate the steady two-dimensional (2D) Hiemenz flow with heat transfer of Reiner-Rivlin fluid over a linearly stretching/shrinking sheet. Design/methodology/approach The Navier–Stokes equations are transformed into self-similar equations using appropriate similarity transformations and then solved numerically by using shooting technique. A simple but effective mathematical analysis has been used to prove the existence of a solution for stretching case (λ> 0). Moreover, an attempt has been laid to carry the asymptotic solution behavior for large stretching. The obtained asymptotic solutions are compared with direct numerical solutions, and the comparison is quite remarkable. Findings It is observed that the self-similar equations exhibit dual solutions within the range [λc, −1] of shrinking parameter λ, where λc is the turning point from where the dual solutions bifurcate. Unique solution is found for all stretching case (λ > 0). It is noticed that the effects of cross-viscous parameter L and shrinking parameter λ on velocity and thermal fields show opposite character in the dual solution branches. Thus, a linear temporal stability analysis is performed to determine the basic feasible solution. The stability analysis is based on the sign of the smallest eigenvalue, where positive or negative sign leading to a stable or unstable solution. The stability analysis reveals that the first solution is stable that describes the main flow. Increase in cross-viscous parameter L resulting in a significant increment in skin friction coefficient, local Nusselt number and dual solutions domain. Originality/value This work’s originality is to examine the combined effects of cross-viscous parameter and stretching/shrinking parameter on skin friction coefficient, local Nusselt number, velocity and temperature profiles of Hiemenz flow over a stretching/shrinking sheet. Although many studies on viscous fluid and nanofluid have been investigated in this field, there are still limited discoveries on non-Newtonian fluids. The obtained results can be used as a benchmark for future studies of higher-grade non-Newtonian flows with several physical aspects. All the generated results are claimed to be novel and have not been published elsewhere.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ioan Pop ◽  
Mohammadreza Nademi Rostami ◽  
Saeed Dinarvand

Purpose The purpose of this article is to study the steady laminar magnetohydrodynamics mixed convection stagnation-point flow of an alumina-graphene/water hybrid nanofluid with spherical nanoparticles over a vertical permeable plate with focus on dual similarity solutions. Design/methodology/approach The single-phase hybrid nanofluid modeling is based on nanoparticles and base fluid masses instead of volume fraction of first and second nanoparticles as inputs. After substituting pertinent similarity variables into the basic partial differential equations governing on the problem, the authors obtain a complicated system of nondimensional ordinary differential equations, which has non-unique solution in a certain range of the buoyancy parameter. It is worth mentioning that, the stability analysis of the solutions is also presented and it is shown that always the first solutions are stable and physically realizable. Findings It is proved that the magnetic parameter and the wall permeability parameter widen the range of the buoyancy parameter for which the solution exists; however, the opposite trend is valid for second nanoparticle mass. Besides, mass suction at the surface of the plate as well as magnetic parameter leads to reduce both hydrodynamic and thermal boundary layer thicknesses. Moreover, the assisting flow regime always has higher values of similarity skin friction and Nusselt number relative to opposing flow regime. Originality/value A novel mass-based model of the hybridity in nanofluids has been used to study the foregoing problem with focus on dual similarity solutions. The results of this paper are completely original and, to the best of the authors’ knowledge, the numerical results of the present paper were never published by any researcher.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Liaquat Ali Lund ◽  
Zurni Omar ◽  
Ilyas Khan

Purpose The purpose of this study is to find the multiple branches of the three-dimensional flow of Cu-Al2 O3/water rotating hybrid nanofluid perfusing a porous medium over the stretching/shrinking surface. The extended model of Darcy due to Forchheimer and Brinkman has been considered to make the hybrid nanofluid model over the pores by considering the porosity and permeability effects. Design/methodology/approach The Tiwari and Das model with the thermophysical properties of spherical particles for efficient dynamic viscosity of the nanoparticle is used. The linear similarity transformations are applied to convert the partial differential equations into ordinary differential equations (ODEs). The system of governing ODEs is solved by using the three-stage Lobatto IIIa scheme in MATLAB for evolving parameters. Findings The system of governing ODEs produces dual branches. A unique stable branch is identified with help of stability analysis. The reduced heat transfer rate has been shown to increase with the reduced ϕ2 in both branches. Further, results revealed that the presence of multiple branches depends on the ranges of porosity, suction and stretching/shrinking parameters for the particular value of the rotating parameter. Originality/value Dual branches of the three-dimensional flow of Cu-Al2 O3/water rotating hybrid nanofluid have been found. Therefore, stability analysis of the branches is also conducted to know which branch is appropriate for the practical applications. To the best of the authors’ knowledge, this research is novel and there is no previously published work relevant to the present study.


Sign in / Sign up

Export Citation Format

Share Document