Heat Transfer Enhancement of Water Spray Cooling by the Surface Roughness Effect

2010 ◽  
Vol 34 (2) ◽  
pp. 203-212 ◽  
Author(s):  
Jung-Ho Lee
2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Jian-nan Chen ◽  
Rui-na Xu ◽  
Zhen Zhang ◽  
Xue Chen ◽  
Xiao-long Ouyang ◽  
...  

Enhancing spray cooling with surface structures is a common, effective approach for high heat flux thermal management to guarantee the reliability of many high-power, high-speed electronics and to improve the efficiency of new energy systems. However, the fundamental heat transfer enhancement mechanisms are not well understood especially for nanostructures. Here, we fabricated six groups of nanowire arrayed surfaces with various structures and sizes that show for the first time how these nanostructures enhance the spray cooling by improving the surface wettability and the liquid transport to quickly rewet the surface and avoid dry out. These insights into the nanostructure spray cooling heat transfer enhancement mechanisms are combined with microstructure heat transfer mechanism in integrated microstructure and nanostructure hybrid surface that further enhances the spray cooling heat transfer.


2001 ◽  
Author(s):  
J. Ward ◽  
M. de Oliveira ◽  
D. R. Garwood ◽  
R. A. Wallis

Abstract The desired mechanical properties of the nickel-based or titanium forgings used in gas turbines for aircraft and power generation applications can be controlled by varying the rate of cooling from the so-called solution temperature during an initial heat treatment process. The use of dilute air-water spray cooling of these forgings is a technique which can provide heat transfer rates lying between those associated with conventional oil quenching or convective air-cooling. Air assisted atomisation can result in fine sprays over a wide range of water flow rates and it has a further advantage in that the air “sweeps” the surface and hence helps to prevent the build up of deleterious vapour films at high surface temperatures. The paper presents experimental data for the heat transfer rates associated with the use of these sprays to cool surfaces from temperatures of approximately 800°C. Many forgings contain surface recesses, which can lead to build up or “pooling” of the water so that the effect of variations in surface geometry is also reported. Periodic interruption of the water flow is a technique which can be employed to provide additional control of the heat transfer rate, particularly at temperatures below 500°C so that data is also presented for pulsed sprays.


Author(s):  
Chang Cai ◽  
Hong Liu ◽  
Han Chen ◽  
Chuanqi Zhao ◽  
Jiuliang Gao ◽  
...  

Abstract Heat transfer characteristics of water spray cooling with n-butanol additive were experimentally studied in this paper. The results indicated that adding n-butanol can effectively enhance the heat dissipation and control the surface temperature. The optimal concentration of n-butanol corresponding to the best heat transfer performance is 0.5 vol%. The experimental Nusselt numbers also agree well with a previous correlation with Weber, Prandtl, Jacob and Reynolds numbers, evidenced by a maximum absolute error of 6.34%. The measurement also showed that the decrease of surface tension and contact angle of the n-butanol-water mixture is the main mechanism to enhance the spray cooling heat transfer, while other physical properties also play an important role. The surface temperature non-uniformity in the radial direction is more apparent at a high heat flux while the addition of different contents of n-butanol has a negligible effect.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 80
Author(s):  
Yunus Tansu Aksoy ◽  
Yanshen Zhu ◽  
Pinar Eneren ◽  
Erin Koos ◽  
Maria Rosaria Vetrano

Cooling by impinging droplets has been the subject of several studies for decades and still is, and, in the last few years, the potential heat transfer enhancement obtained thanks to nanofluids’ use has received increased interest. Indeed, the use of high thermal conductivity fluids, such as nanofluids’, is considered today as a possible way to strongly enhance this heat transfer process. This enhancement is related to several physical mechanisms. It is linked to the nanofluids’ rheology, their degree of stabilization, and how the presence of the nanoparticles impact the droplet/substrate dynamics. Although there are several articles on droplet impact dynamics and nanofluid heat transfer enhancement, there is a lack of review studies that couple these two topics. As such, this review aims to provide an analysis of the available literature dedicated to the dynamics between a single nanofluid droplet and a hot substrate, and the consequent enhancement or reduction of heat transfer. Finally, we also conduct a review of the available publications on nanofluids spray cooling. Although using nanofluids in spray cooling may seem a promising option, the few works present in the literature are not yet conclusive, and the mechanism of enhancement needs to be clarified.


Sign in / Sign up

Export Citation Format

Share Document