scholarly journals The Use of Charge-Transfer Complexation in The Spectrophotometric Determination of Amlodipine Besylate

2000 ◽  
Vol 68 (3) ◽  
pp. 235-246 ◽  
Author(s):  
Ayșegül (Yardımcı) Gölcü ◽  
Cem Yücesoy ◽  
Selahattin Serin

A simple and sensitive analytical method has been developed for the spectrophotometric assay of amlodipine besylate (ADB) in pure forms and tablets have been described. The method is based on the formation of a charge-transfer complex between the drug and tetrachloquinone (TCQ). This complex exhibit intense absorption bands in the electronic spectrum. The molecular ratio of the reactant in the complex was established and the experimental conditions leading to maximum charge-transfer band was also studied. The reaction proceeds quantitatively at pH 9 and 55°C for 10 min, the absorbance was measured at 346 nm. The method was applied to commercially available tablets and the results were statistically compared wrth those obtained by UV spectrophotometric method, using Newman-Keuls tests. In our method, Beer's Law limits to 5-25 µg/ml. The optimum experimental parameters for colour production with reagent were studied and incorporated into procedure.

2012 ◽  
Vol 18 (2) ◽  
pp. 263-272 ◽  
Author(s):  
K.B. Vinay ◽  
H.D. Revenasiddappa

Two simple, rapid and accurate spectrophotometric procedures are proposed for the determination of quetiapine fumarate (QTF) in pharmaceuticals and in spiked human urine. The methods are based on charge transfer complexation reactions of free base form of the drug (quetiapine, QTP), as n-electron donor (D), with either p-chloranilic acid (p-CAA) (method A) or 2,3-dichloro-5,6-dicyanoquinone (DDQ) (method B) as ?-acceptors (A). The coloured charge transfer complexes produced exhibit absorption maxima at 520 and 540 nm, in method A and method B, respectively. The experimental conditions such as reagent concentration, reaction solvent and time have been carefully optimized to achieve the maximum sensitivity. Beer?s law is obeyed over the concentration ranges of 8.0 - 160 and 4.0 - 80.0 ?g ml-1, for method A and method B, respectively. The calculated molar absorptivity values are 1.77 ? 103 and 4.59 ? 103 l mol-1cm-1, respectively, for method A and method B. The Sandell sensitivity values, limits of detection (LOD) and quantification (LOQ) have also been reported. The stoichiometry of the reaction in both cases was accomplished adopting the limiting logarithmic method and was found to be 1: 2 (D: A). The accuracy and precision of the methods were evaluated on intra-day and inter-day basis. The proposed methods were successfully applied for the determination of QTF in pharmaceutical formulations and spiked human urine.


2008 ◽  
Vol 5 (3) ◽  
pp. 493-498 ◽  
Author(s):  
Marothu Vamsi Krishna ◽  
Dannana Gowri Sankar

In this study, four simple, fast, accurate and sensitive spectrophotometric methods have been developed for the determination of gemifloxacin mesylate in pharmaceutical formulations. The methods are based on the charge transfer complexation reaction of the drug as n-electron donor with sigma (σ)-acceptor iodine, and thepi(π)-acceptors 2, 3-dichloro-5, 6-dicyano-p-benzoquinone (DDQ)-7,7,8,8-tetra cyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE). The obtained charge transfer complexes were measured at 290nm for iodine (in 1, 2-dichloro ethane), at 470, 840 and 420 nm for DDQ, TCNQ and TCNE (in acetonitrile), respectively. Optimization of different experimental conditions is described. Beer's law is obeyed in the concentration range of 6-30, 2-10, 2.5-12.5 and 1-5 μg mL−1for iodine, DDQ, TCNQ and TCNE methods, respectively. The proposed methods were applied successfully to the determination of GFX in pharmaceutical formulations with good accuracy and precision.


2020 ◽  
Vol 16 ◽  
Author(s):  
Sheng-Yun Li ◽  
Fang Tian

: A spectrophotometry was investigated for the determination of epsilon aminocaproic acid (EACA) with p-nitrophenol (PNP). The method was based on a charge transfer (CT) complexation of this drug as n-electron donor with π-acceptor PNP. Experiment indicated that the CT complexation was carried out at room temperature for 10 minutes in dimethyl sulfoxide solvent. The spectrum obtained for EACA/PNP system showed the maximum absorption band at wavelength of 425 nm. The stoichiometry of the CT complex was found to be 1:1 ratio by Job’s method between the donor and the acceptor. Different variables affecting the complexation were carefully studied and optimized. At the optimum reaction conditions, Beer’s law was obeyed in a concentration limit of 1~6 µg mL-1. The relative standard deviation was less than 2.9%. The apparent molar absoptivity was determined to be 1.86×104 L mol-1cm-1 at 425 nm. The CT complexation was also confirmed by both FTIR and 1H NMR measurements. The thermodynamic properties and reaction mechanism of the CT complexation have been discussed. The developed method could be applied successfully for the determination of the studied compound in its pharmaceutical dosage forms with a good precision and accuracy compared to official method as revealed by t- and F-tests.


2010 ◽  
Vol 7 (4) ◽  
pp. 1507-1513 ◽  
Author(s):  
V. Annapurna ◽  
G. Jyothi ◽  
V. Nagalakshmi ◽  
B. B. V. Sailaja

Simple, accurate and reproducible UV spectrophotometric methods were established for the assay of pyrilamine maleate (PYRA) based on the formation of oxidative coupling and precipitation, charge transfer complexation products. Method A includes the oxidative coupling reaction of PYRA with 3-methyl-2-benzathiazolinone hydrazone (MBTH) in presence of Ce(IV). The formation of oxidative coupling product with 4-amino phenazone (4-AP) in presence of K3Fe(CN)6is incorporated in method B. Precipitation/charge transfer complex formation of the PYRA with tannic acid (TA)/Metol-Cr(VI) in method C were proposed. The optical characteristics such as Beers law limits, molar absorptivity and Sandell’s sensitivity for the methods (A-C) are given. Regression analysis using the method of least squares was made to evaluate the slope (b), intercept (a) and correlation coefficient (r) and standard error of estimation (Se) for each system. Determination of pyrilamine in bulk form and in pharmaceutical formulations were also incorporated.


2002 ◽  
Vol 85 (5) ◽  
pp. 1003-1008 ◽  
Author(s):  
Sheikha Al-Ghannam ◽  
Fathalla Belal

Abstract A simple charge-transfer complexation method is described for the spectrophotometric assay of nizatidine, ranitidine, and famotidine. This method is based on interaction of these drugs, as n-electron donors, with 7,7,8,8-tetracyanoquinodimethane, as the π-acceptor, in acetonitrile to give highly colored green radical anions that are measured at 840 nm. Calibration graphs for the 3 compounds are linear over the concentration ranges of 1–6 μg/mL for nizatidine and ranitidine and 1–7 μg/mL for famotidine, with correlation coefficients (n = 6) of >0.999. The conditioned stability constants and the free energy changes were measured; the values obtained were generally high and negative, respectively, suggesting highly stable complexes. The proposed method was successfully applied to the determination of the drugs in pharmaceutical preparations. The assay results were in accordance with those obtained by using reference methods.


2015 ◽  
Vol 68 (7) ◽  
pp. 1108 ◽  
Author(s):  
Osmundo Dantas Pessoa-Neto ◽  
Tiago Almeida Silva ◽  
Vagner Bezerra dos Santos ◽  
Orlando Fatibello-Filho

A compact environmentally friendly microcontrolled microfluidic device ideal for in situ phosphate determination was developed based on a microsystem based on low-temperature co-fired ceramics (LTCC) coupled to a light-emitting diode (LED)–photometer with a multicommutation flow analysis (MCFA) approach. The experimental parameters of the MCFA analyzer were optimized by chemometric studies. Under the best experimental conditions, limits of detection and quantification of 0.02 mg P L–1 and 0.07 mg P L–1, respectively, and a sampling frequency of 67 h–1 were estimated. Moreover, a low sample consumption of only 60 μL per determination was the other advantage that fully meets the requirements of sustainable research and green chemistry purposes.


Sign in / Sign up

Export Citation Format

Share Document