scholarly journals Identification of high yielding inbred lines resistant to late wilt disease caused by Harpophora maydis in maize

2021 ◽  
Vol 12 (01) ◽  
2017 ◽  
Vol 16 (2) ◽  
pp. 169-177 ◽  
Author(s):  
Ranjan K. Shaw ◽  
P. Kadirvel ◽  
Mobeen Shaik ◽  
M. Santha Lakshmi Prasad ◽  
R. D. Prasad ◽  
...  

AbstractCastor is an industrially important oilseed crop. Vascular wilt caused by the soil borne fungus Fusarium oxysporum f. sp. ricini is a serious disease of castor. Use of resistant cultivars is the only viable option for management of wilt disease problem in castor production. Excellent sources of resistance to wilt have been found in castor germplasm. In this study, a set of four castor inbred lines (48–1, CI-1, AP42 and AP48) was characterized for inheritance of resistance to wilt by studying segregating populations generated by crossing these inbred lines with eight different susceptible genotypes. An artificial screening method (sick pot) with a new scoring system (days to wilt) was used for evaluation of plant progenies for reaction to the pathogen infection. The reaction of F1s indicated that the nature of resistance in 48–1, CI-1 and AP48 is recessive whereas it was dominant in AP42. Inheritance results from eight F2 populations showed that resistance to wilt is conferred by a single locus in one population and at least two loci, which interact in complementary way, in other seven populations. Different modes of inheritance were also observed when the same resistant source was crossed with different susceptible parents, indicating the possible role of genetic backgrounds in determining resistance. Overall, the results suggested that Mendelian resistance to wilt is predominant in the castor genotypes, which can be exploited for breeding cultivars. Particularly, AP42 with dominant nature of resistance will be of great interest to hybrid breeding.


2021 ◽  
Author(s):  
N. C. Sunitha ◽  
E. Gangappa ◽  
R. P. Veeresh Gowda ◽  
Ramesh S ◽  
Sunil Biradar ◽  
...  

Abstract Late wilt disease (LWD) caused by Harpophora maydis (Samra, Sabet and Hing) is emerging as major production constraint in maize across the world. As a prelude to develop maize hybrids resistance to LWD, genetic basis of resistance was investigated. Two F2:3 mapping populations (derived from CV156670 × 414-33 (P-1) and CV156670 × CV143587 (P-2)) were challenged with LWD at two locations (Kallinayakanahalli and Muppadighatta) during 2017 post-rainy season. Wider range of LWD scores were observed at both locations in both the populations. LWD response was influenced by significant Genotype × location interaction. Six and 56 F2:3 progeny families showed resistance level better than resistant parent. 150 and 199 polymorphic SNP markers were used to genotype P-1 and P-2, respectively. Inclusive composite interval mapping was performed to detect significant QTL, QTL × QTL, QTL × Location interaction effects. Three major and four minor QTL controlling LWD resistance were detected on chromosome-1. Position and effect of the QTL varied with the location. Significant di-QTL interactions involving QTL (with significant and/or non-significant effects) located within and between all the ten chromosomes were detected. Five of the seven detected QTL in our study showed significant QTL × location interaction. Though two major QTL (q-lw-1.5 and q-lw-1.6) with lower Q×L interaction effects could be considered as stable, their phenotypic variance is not large enough to deploy them in MAS. Based on these results, strategies to breed maize for resistance to LWD are discussed.


2006 ◽  
Vol 34 (2-3) ◽  
pp. 941-948 ◽  
Author(s):  
Tomislav Zivanovic ◽  
Savo Vuckovic ◽  
Slaven Prodanovic ◽  
Goran Todorovic

Sign in / Sign up

Export Citation Format

Share Document