2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Jianye Gao ◽  
Tao He ◽  
Yuanming Huo ◽  
Miao Song ◽  
Tingting Yao ◽  
...  

AbstractDuctile fracture of metal often occurs in the plastic forming process of parts. The establishment of ductile fracture criterion can effectively guide the selection of process parameters and avoid ductile fracture of parts during machining. The 3D ductile fracture envelope of AA6063-T6 was developed to predict and prevent its fracture. Smooth round bar tension tests were performed to characterize the flow stress, and a series of experiments were conducted to characterize the ductile fracture firstly, such as notched round bar tension tests, compression tests and torsion tests. These tests cover a wide range of stress triaxiality (ST) and Lode parameter (LP) to calibrate the ductile fracture criterion. Plasticity modeling was performed, and the predicted results were compared with corresponding experimental data to verify the plasticity model after these experiments. Then the relationship between ductile fracture strain and ST with LP was constructed using the modified Mohr–Coulomb (MMC) model and Bai-Wierzbicki (BW) model to develop the 3D ductile fracture envelope. Finally, two ductile damage models were proposed based on the 3D fracture envelope of AA6063. Through the comparison of the two models, it was found that BW model had better fitting effect, and the sum of squares of residual error of BW model was 0.9901. The two models had relatively large errors in predicting the fracture strain of SRB tensile test and torsion test, but both of the predicting error of both two models were within the acceptable range of 15%. In the process of finite element simulation, the evolution process of ductile fracture can be well simulated by the two models. However, BW model can predict the location of fracture more accurately than MMC model.


2011 ◽  
Vol 130-134 ◽  
pp. 976-979
Author(s):  
Yan Guo Shi ◽  
Bao Jun Yao ◽  
Qing Ling Zhang ◽  
Xin Hua Mei

This title use the ANSYS Secondary Development Technology as platform, developed the user101 element that stable for fracture process simulation, and embedded fracture criterion into ANSYS software. Realized the fracture forecast on metal forming process and verified the simulation results through the experiment.


2010 ◽  
Vol 44-47 ◽  
pp. 2837-2841 ◽  
Author(s):  
Ying Tong

As one of the principal failures, ductile fracturing restricts metal forming process. Cockcroft-Latham fracture criterion is suited for tenacity fracture in bulk metal-forming simulation. An innovative approach involving physical compression experiments, numerical simulations and mathematic computations provides mutual support to evaluate ductile damage cumulating process and ductile fracture criteria (DFC). The results show that the maximum cumulated damage decreases with strain rate rising, and the incremental ratios, that is damage sensitive rate, vary uniformly during the upsetting processes at different strain rates. The damage sensitive rate decreases rapidly, then it becomes stability in a constant 0.11 after true strain -0.85. The true strain -0.85 was assumed as the fracture strain, and the DFC of 6061-T6 aluminum alloy is almost a constant 0.2. According to DFC, the exact fracture moment and position during various forming processes will be predicted conveniently.


2012 ◽  
Vol 463-464 ◽  
pp. 1047-1051
Author(s):  
M. Rahafrooz ◽  
M. Sanjari ◽  
M. Moradi ◽  
Danial Ghodsiyeh

The Continuum Damage Mechanics is a branch of applied mechanics that used to predict the initiation of cracks in metal forming process. In this article, damage definition and ductile damage model are explained, and also ductile damage model is applied to predict initiation of fracture in gas metal forming process with ABAQUS/EXPLICIT simulation. In this method instead of punch, the force is applied by air pressure. In this study, first the ductile damage criterion and its relations are taken into account and, subsequently, the process of gas-aid formation process is put into consideration and ductile damage model for prediction of rupture area is simulated using ABAQUS simulation software. Eventually, the process of formation via gas on the aluminum with total thickness of 0.24 [mm] was experimentally investigated and the results acquired from experiment were compared with relating simulations. The effect of various parameters such as radius of edge matrix, gas pressure and blank temperature has been evaluated. Simulation was compared with experimental results and good agreement was observed.


2014 ◽  
Vol 23 (8) ◽  
pp. 1189-1210 ◽  
Author(s):  
HS Liu ◽  
MW Fu

A modified ductile fracture criterion is proposed based on the traditional Ayada criterion and coded into the finite element simulation platform of VUMAT/ABAQUS for prediction and analysis of ductile fracture in metal plastic strain processes. In this modified ductile fracture criterion, stress triaxiality is taken into account, and more importantly, the exponential effect of the equivalent plastic strain on the damage behavior, which is generally ignored in other ductile fracture criteria, is also considered. The material related constants in the modified ductile fracture criterion are determined by tensile tests together with finite element simulations. The applicability and reliability of the ductile fracture criterion in ductile fracture prediction in two types of classic stress states, viz. shear stress, tensile stress in sheet metal forming, are investigated based on the deformation behavior and fracture occurrence in two case studies with two typical types of materials, i.e. Al 6061 and T10A. The materials have a wide range of plasticity. The simulation and experimental results verify the applicability and reliability of the developed ductile fracture criterion in prediction of the ductile fracture with and without necking in different stress states of plastic strain.


Sign in / Sign up

Export Citation Format

Share Document