Study on Numerical Simulation Technology Based on ANSYS of Fracture Behavior in Metal Forming Process

2011 ◽  
Vol 130-134 ◽  
pp. 976-979
Author(s):  
Yan Guo Shi ◽  
Bao Jun Yao ◽  
Qing Ling Zhang ◽  
Xin Hua Mei

This title use the ANSYS Secondary Development Technology as platform, developed the user101 element that stable for fracture process simulation, and embedded fracture criterion into ANSYS software. Realized the fracture forecast on metal forming process and verified the simulation results through the experiment.

2008 ◽  
Vol 385-387 ◽  
pp. 841-844
Author(s):  
Kyu Taek Han ◽  
Yi Jiong Jin

A muffler is an important part used to reduce noise and to purify exhaust gas in cars and heavy equipments. Recently there has been a growing interest in the designing and manufacturing the muffler tube due to the strict environmental regulations. The technique of perforating on the muffler tube has been largely affected by the shear clearance. And considering the concentration of the force around the punch edge, it is essential to reduced it through the punch radius. In this research, finite element analysis has been carried out to predict optimal forming conditions of the muffler tube using DEFORMTM-3D. In analysis, using one-fourth component of the punch and die, metal forming process is simulated and Cockcroft-Latham ductile fracture theory is used. According to the simulation results, when the shear clearance is 0.04mm, the punch radius is 0.05mm and the value of plate holder force is 250KN, the relation of load-stroke for punch is optimized. Also the burr is minimized and optimal shear section is obtained. The simulation results are reflected to the forming process design for the muffler tube.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5692-5698 ◽  
Author(s):  
A. HIRAHARA ◽  
R. HINO ◽  
F. YOSHIDA ◽  
V. V. TOROPOV

A numerical optimization system for sheet metal forming process has been developed based on a combination of response-surface-based optimization strategy with finite element simulation. The most important feature of the optimization system is introduction of a new fracture criterion to predict fracture limit under non-proportional deformation. In addition, a sheet-edge fracture criterion is also introduced to predict fracture limit under stretch-flanging deformation. The numerical optimization system is developed using the fracture criteria as accurate fracture constraints to avoid sheet breakage. The developed optimization system is applied to the optimum blank design for a square-cup deep drawing process of perforated blank. The optimum blank design, which minimizes the amount of material and avoids the sheet fracture, is obtained successfully. The effect of definition of fracture constraints on optimization calculation is also discussed.


Procedia CIRP ◽  
2014 ◽  
Vol 18 ◽  
pp. 203-208 ◽  
Author(s):  
J. Enz ◽  
S. Riekehr ◽  
V. Ventzke ◽  
N. Sotirov ◽  
N. Kashaev

2000 ◽  
Vol 123 (4) ◽  
pp. 398-402 ◽  
Author(s):  
Sing C. Tang ◽  
Z. Cedric Xia ◽  
Feng Ren

It is well known in the literature that the isotropic hardening rule in plasticity is not realistic for handling plastic deformation in a simulation of a full sheet-metal forming process including springback. An anisotropic hardening rule proposed by Mroz is more realistic. For an accurate computation of the stress increment for a given strain increment by using Mroz’s rule, the conventional subinterval integration takes excessive computing time. This paper proposes the radial return method to compute such stress increment for saving computing time. Two numerical examples show the efficiency of the proposed method. Even for a sheet model with more than 10,000 thin shell elements, the radial return method takes only 40 percent of the overall computing time by the subinterval integration.


Sign in / Sign up

Export Citation Format

Share Document