scholarly journals Thermodynamic Study on Density and Viscosity of Binary Mixtures of Ethyl acetoacetate with (C4-C9) Aliphatic Ketones at (303.15 and 308.15) K

Author(s):  
Ayasen Jermaine Kemeakegha ◽  
Benjamin Amabebe Jumbo

Investigation on Density (ρ) and viscosity (η) of various binary mixtures of ethylacetoacetate and straight chain aliphatic ketones (butan-2-one, pentan-2- one, hexan-2-one, heptan-2-one, octan-2-one and nonan2-one) have been carried out over the entire solvents composition range at temperatures of 303.15K and 308.15K. From the data obtained, the excess molar volumes (V E ), the excess viscosity (η E ) and excess Gibbs free energy of activation for viscous flow (ΔG*E) have been calculated from the experimental density and viscosity measurements at the working temperatures. Excess molar volumes, V E results are negative and positive over the entire range of mole fractions and become more positive as the chain length increases. The excess viscosities, η E were both positive and negative over the entire mole fraction range. While the observed excess Gibbs free energies of activation of viscous flow, ΔG*E data are positive throughout the entire mole fraction range of solvents composition at all investigated temperatures. These observed results of the excess functions have been interpreted in terms of possible molecular interactions in the binary mixtures.

2002 ◽  
Vol 80 (5) ◽  
pp. 467-475 ◽  
Author(s):  
Amalendu Pal ◽  
Rakesh Kumar Bhardwaj

Excess molar volumes (VmE) and dynamic viscosities (η) have been measured as a function of composition for binary liquid mixtures of propylamine with 2,5-dioxahexane, 2,5,8-trioxanonane, 2,5,8,11-tetraoxadodecane, 3,6,9-trioxaundecane, and 5,8,11-trioxapentadecane at 298.15 K. The excess volumes are positive over the entire range of composition for the systems propylamine + 2,5-dioxahexane, and + 3,6,9-trioxaundecane, negative for the systems propylamine + 2,5,8,11-tetraoxadodecane, and + 5,8,11-trioxapentadecane, and change sign from positive to negative for the remaining system propylamine + 2,5,8-trioxanonane. From the experimental data, deviations in the viscosity (Δln η) and excess energies of activation for viscous flow (ΔG*E) have been derived. These values are positive for all mixtures with the exception of propylamine + 2,5-dioxahexane.Key words : excess volume, viscosity, binary mixtures.


1992 ◽  
Vol 70 (12) ◽  
pp. 2859-2863 ◽  
Author(s):  
Roque Riggio ◽  
Hector E. Martinez ◽  
Norma Z. de Salas

From experimental densities, viscosities, and refractive indexes for the acetylacetone + 1-pentanol, + 2-Pentanol, + isoamyl alcohol, and + tert-amyl alcohol systems at 298.15 K, the excess molar volumes, excess viscosities, excess molar free energies of activation of flow, and excess internal pressures were calculated over the whole concentration range. Conclusions about the molecular interactions in these mixtures were drawn from the variations of the excess functions with the composition.


2011 ◽  
Vol 8 (2) ◽  
pp. 348-358 ◽  
Author(s):  
Baghdad Science Journal

mixtures of cyclohexane + n-decane and cyclohexane + 1-pentanol have been measured at 298.15, 308.15, 318.15, and 328.15 K over the whole mole fraction range. From these results, excess molar volumes, VE , have been calculated and fitted to the Flory equations. The VE values are negative and positive over the whole mole fraction range and at all temperatures. The excess refractive indices nE and excess viscosities ?E have been calculated from experimental refractive indices and viscosity measurements at different temperature and fitted to the mixing rules equations and Heric – Coursey equation respectively to predict theoretical refractive indices, we found good agreement between them for binary mixtures in this study. The variation of these properties with composition and temperatures of the binary mixtures are discussed in terms of molecular interactions.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ayasen Jermaine Kemeakegha ◽  
Grace Agbizu Cookey ◽  
Welford-Abbey Lolo Izonfuo

Densities of binary mixtures of 2-methoxyethanol (2-MeO-EtOH) and 2-ethoxyethanol (2-EtO-EtOH) with hexylamine (HLA), diethylamine (DEA), triethylamine (TEA), tert-butylamine (TBA), aniline (ANL), and benzylamine (BLA) have been determined at varying compositions of the alkoxyalkanols at 298.15 K. The excess molar volumes, VE, of the binary mixtures were calculated from the experimental density data of the mixtures and the component single solvents. The calculated excess molar volumes were fitted into the Redlich-Kister polynomial to obtain the fitting coefficients and standard deviations. The excess molar volumes of the binary mixtures of all the solvent systems investigated were negative over the entire range of the solvents composition. The negative values were attributed to stronger hydrogen bond formations between the unlike molecules of mixtures than those between the like molecules of the pure components. The magnitude of the excess molar volumes of the binary mixtures of 2-methoxyethanol and the aliphatic amines were in the order TBA > TEA > DEA > HEA. For the two aromatic amines, the magnitudes were in the order BLA > ANL. For binary mixtures of the amines and 2-ethoxyethanol, the magnitudes were in the order DEA > TEA > TBA > HEA at compositions where the mole fraction of 2-EtO-EtOH was ≤0.5 and TBA > TEA > DEA > HEA above 0.5 mole fraction of 2-EtO-EtOH.


1986 ◽  
Vol 31 (2) ◽  
pp. 152-154 ◽  
Author(s):  
Jagjit S. Sandhu ◽  
Ashok K. Sharma ◽  
Ramesh K. Wadi

2014 ◽  
Vol 79 (6) ◽  
pp. 707-718 ◽  
Author(s):  
Jelena Vuksanovic ◽  
Divna Bajic ◽  
Gorica Ivanis ◽  
Emila Zivkovic ◽  
Ivona Radovic ◽  
...  

The excess molar volumes of twenty two binary mixtures containing various groups of organic compounds: alcohols (ethanol, 1-propanol, 1,2-propanediol, 1,3-propanediol and glycerol), ketone (acetone), ester (butyl lactate), lactam (N-methyl-2-pyrrolidone), PEGs (PEG 200, PEG 400) and aromatics (benzene, toluene and pyridine) were predicted from the refractive index data, using three types of equations coupled with several mixing rules for refractive index calculations: the Lorentz-Lorenz, Dale-Gladstone, Eykman, Arago-Biot, Newton, and Oster. The obtained results were analysed in terms of the applied equation and mixing rule and the nature of interactions between the mixtures? components.


Sign in / Sign up

Export Citation Format

Share Document