scholarly journals SEASONAL DROUGHT DYNAMICS IN EL-BEHEIRA GOVERNORATE, EGYPT

2014 ◽  
Vol 10 (2) ◽  
pp. 140-147 ◽  
Author(s):  
Mossad
Keyword(s):  
Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Brigitte Uwimana ◽  
Yasmín Zorrilla-Fontanesi ◽  
Jelle van Wesemael ◽  
Hassan Mduma ◽  
Allan Brown ◽  
...  

Banana (Musa spp.), a perennial (sub-)tropical crop, suffers from seasonal droughts, which are typical of rain-fed agriculture. This study aimed at understanding the effect of seasonal drought on early growth, flowering and yield traits in bananas grown in the East African highlands. A field experiment was set up in North Tanzania using four genotypes from different geographical origins and two different ploidy levels. The treatments considered were exclusively rain-fed versus rain supplemented with irrigation. Growth in plant girth and leaf area were promising traits to detect the early effect of water deficit. Seasonal drought slowed down vegetative growth, thus significantly decreasing plant girth, plant height and the number of suckers produced when compared to irrigated plants. It also delayed flowering time and bunch maturity and had a negative effect on yield traits. However, the results depended on the genotype and crop cycle and their interaction with the treatments. “Nakitengwa”, an East African highland banana (EAHB; AAA genome group), which is adapted to the region, showed sensitivity to drought in terms of reduced bunch weight and expected yield, while “Cachaco” (ABB genome group) showed less sensitivity to drought but had a poorer yield than “Nakitengwa”. Our study confirms that seasonal drought has a negative impact on banana production in East Africa, where EAHBs are the most predominant type of bananas grown in the region. We also show that a drought-tolerant cultivar not adapted to the East African highlands had a low performance in terms of yield. We recommend a large-scale screening of diploid bananas to identify drought-tolerant genotypes to be used in the improvement of locally adapted and accepted varieties.


2013 ◽  
Vol 14 (1) ◽  
pp. 360-367 ◽  
Author(s):  
Benjamin F. Zaitchik ◽  
Joseph A. Santanello ◽  
Sujay V. Kumar ◽  
Christa D. Peters-Lidard

Abstract Positive soil moisture–precipitation feedbacks can intensify heat and prolong drought under conditions of precipitation deficit. Adequate representation of these processes in regional climate models is, therefore, important for extended weather forecasts, seasonal drought analysis, and downscaled climate change projections. This paper presents the first application of the NASA Unified Weather Research and Forecasting Model (NU-WRF) to simulation of seasonal drought. Simulations of the 2006 southern Great Plains drought performed with and without soil moisture memory indicate that local soil moisture feedbacks had the potential to concentrate precipitation in wet areas relative to dry areas in summer drought months. Introduction of a simple dynamic surface albedo scheme that models albedo as a function of soil moisture intensified the simulated feedback pattern at local scale—dry, brighter areas received even less precipitation while wet, whereas darker areas received more—but did not significantly change the total amount of precipitation simulated across the drought-affected region. This soil-moisture-mediated albedo land–atmosphere coupling pathway is structurally excluded from standard versions of WRF.


2005 ◽  
Vol 29 (3) ◽  
pp. 225-235 ◽  
Author(s):  
Aino Smolander ◽  
Laura Barnette ◽  
Veikko Kitunen ◽  
Ilari Lumme

2008 ◽  
Vol 31 (7) ◽  
pp. 915-924 ◽  
Author(s):  
STEFAN K. ARNDT ◽  
STEPHEN J. LIVESLEY ◽  
ANDREW MERCHANT ◽  
TIMOTHY M. BLEBY ◽  
PAULINE F. GRIERSON

2018 ◽  
Vol 16 ◽  
pp. e00475 ◽  
Author(s):  
Songbo Tang ◽  
Yimin Xu ◽  
Yongbiao Lin ◽  
Enqing Hou ◽  
Weijun Shen ◽  
...  

2018 ◽  
Vol 22 (9) ◽  
pp. 5041-5056 ◽  
Author(s):  
José Miguel Delgado ◽  
Sebastian Voss ◽  
Gerd Bürger ◽  
Klaus Vormoor ◽  
Aline Murawski ◽  
...  

Abstract. A set of seasonal drought forecast models was assessed and verified for the Jaguaribe River in semiarid northeastern Brazil. Meteorological seasonal forecasts were provided by the operational forecasting system used at FUNCEME (Ceará's research foundation for meteorology) and by the European Centre for Medium-Range Weather Forecasts (ECMWF). Three downscaling approaches (empirical quantile mapping, extended downscaling and weather pattern classification) were tested and combined with the models in hindcast mode for the period 1981 to 2014. The forecast issue time was January and the forecast period was January to June. Hydrological drought indices were obtained by fitting a multivariate linear regression to observations. In short, it was possible to obtain forecasts for (a) monthly precipitation, (b) meteorological drought indices, and (c) hydrological drought indices. The skill of the forecasting systems was evaluated with regard to root mean square error (RMSE), the Brier skill score (BSS) and the relative operating characteristic skill score (ROCSS). The tested forecasting products showed similar performance in the analyzed metrics. Forecasts of monthly precipitation had little or no skill considering RMSE and mostly no skill with BSS. A similar picture was seen when forecasting meteorological drought indices: low skill regarding RMSE and BSS and significant skill when discriminating hit rate and false alarm rate given by the ROCSS (forecasting drought events of, e.g., SPEI1 showed a ROCSS of around 0.5). Regarding the temporal variation of the forecast skill of the meteorological indices, it was greatest for April, when compared to the remaining months of the rainy season, while the skill of reservoir volume forecasts decreased with lead time. This work showed that a multi-model ensemble can forecast drought events of timescales relevant to water managers in northeastern Brazil with skill. But no or little skill could be found in the forecasts of monthly precipitation or drought indices of lower scales, like SPI1. Both this work and those here revisited showed that major steps forward are needed in forecasting the rainy season in northeastern Brazil.


Fossil Record ◽  
1999 ◽  
Vol 2 (1) ◽  
pp. 25-61 ◽  
Author(s):  
W.-D. Heinrich

Tendaguru is one of the most important dinosaur localities in Africa. The Tendaguru Beds have produced a diverse Late Jurassic (Kimmeridgian to Tithonian) dinosaur assemblage, including sauropods (<i>Brachiosaurus, Barosaurus, Dicraeosaurus, Janenschia</i>), theropods (e.g., <i>Elaphrosaurus, Ceratosaurus, Allosaurus</i>), and ornithischians (<i>Kentrosaurus, Dryosaurus</i>). Contrary to the well studied skeletal anatomy of the Tendaguru dinosaurs, the available taphonomic information is rather limited, and a generally accepted taphonomic model has not yet been established. Assessment of unpublished excavation sketches by the German Tendaguru expedition (1909–1913) document bone assemblages of sauropod and ornithischian dinosaurs from the Middle Saurian Bed, Upper Saurian Bed, and the Transitional Sands above the <i>Trigonia smeei</i> Bed, and shed some light on the taphonomy of the Tendaguru dinosaurs. Stages of disarticulation range from incomplete skeletons to solitary bones, and strongly argue for carcass decay and post-mortem transport prior to burial. The sauropod bone accumulations are dominated by adult individuals, and juveniles are rare or missing. The occurrence of bones in different superimposed dinosaur-bearing horizons indicates that skeletal remains were accumulated over a long time span during the Late Jurassic, and the majority of the bone accumulations are probably attritional. These accumulations are likely to have resulted from long-term bone imput due to normal mortality events caused by starvation, seasonal drought, disease, old age and weakness. The depositional environment of the Middle and Upper Saurian Bed was mainly limnic to brackish in origin, while the palaeoenvironment of the Transitional Sands was marginal marine. <br><br> Tendaguru zählt zu den bedeutendsten Dinosaurier-Lagerstätten Afrikas. Aus den Tendaguru-Schichten sind zahlreiche Skelettreste von Sauropoden (<i>Brachiosaurus, Barosaurus, Dicraeosaurus, Janenschia</i>), Theropoden (z.B. <i>Elaphrosaurus, Ceratosaurus, Allosaurus</i>) und Ornithischiern (<i>Kentrosaurus, Dryosaurus</i>) geborgen worden. Sie stammen aus der späten Jura-Zeit (Kimmeridge — Tithon). Während der Skelettbau der Tendagurusaurier gut untersucht ist, wirft die Taphonomie des Sauriervorkommens von Tendaguru noch immer Fragen auf. Unklar ist bislang, wie die enormen Anreicherungen von Dinosaurierknochen in den Tendaguru-Schichten zustandekamen. Unveröffentlichte Grabungsskizzen der Deutschen Tendaguru Expedition (1909–1913) erweitern unsere Kenntnisse über die Taphonomie der Tendagurusaurier. In den ausgewerteten Grabungsskizzen sind Knochenansammlungen von Sauropoden und Ornithischiern aus dem Mittleren und Oberen Sauriermergel sowie aus den Übergangsschichten über der <i>Trigonia smeei</i>-Schicht dokumentiert. Die Lage und der Erhaltungszustand der Funde lassen auf erheblichen Zerfall der Kadaver und post-mortalen Transport von Skelettelementen vor der Einbettung schließen. Das Vorkommen von Saurierknochen in mehreren übereinanderliegenden Profilabschnitten der Tendaguru-Schichten zeigt, daß Skelettreste während der späten Jura-Zeit über einen längeren Zeitraum hinweg akkumuliert wurden. Die Ansammlungen von Skelettresten gehen wahrscheinlich auf „normale” Sterbe-Ereignisse zurück, wie z. B. Verhungern, Verdursten, Kankheit, Altersschwäche und jahreszeitliche Dürre. Als Ablagerungsraum der Mittleren und Oberen Saurierschicht kommt ein küstennaher limnischer, zeitweise wohl auch brackischer Küstenstreifen in Betracht. Die knochenführenden Übergangsschichten unter- und oberhalb der Saurierschichten sind randlich marine Ablagerungen. <br><br> doi:<a href="http://dx.doi.org/10.1002/mmng.1999.4860020102" target="_blank">10.1002/mmng.1999.4860020102</a>


2021 ◽  
Author(s):  
Qingyin Zhang ◽  
Xiaoxu Jia ◽  
Mingan Shao

Abstract BackgroundShifts in rainfall patterns that are associated with climate change are likely to cause widespread forest decline in regions where droughts are predicted to increase in duration and severity. However, causes of forest decline and their physiological mechanisms remain unclear, particularly the roles of carbon metabolism and xylem function. To explore the response of hydraulic architecture and non-structural carbohydrates (NSC) traits under seasonal drought, we conducted a manipulation experiment in a Robinia pseudoacacia plantation in 2015 and 2016 in Loess Plateau of China. Sap-flow, leaf area index, water potential, non-structural carbohydrate concentrations, and hydraulics in different organs were measured. ResultsThe mean pre-dawn and midday leaf water potential after two growing seasons of drought stress was significantly lower (-2.2 MPa and -2.7 MPa, respectively) than those of control trees (-1.5 MPa and -2.0 MPa, respectively). Drought stress accelerated the loss of conductivity, and promoted the formation of narrow hydraulic safety margins, which indicated that hydraulic failure could be a good predictor of “physiological drought” in trees when subjected to two growing seasons of drought. Both sugar and starch concentrations in stems and roots were similar in all trees throughout the drought period, which indicated that trees maintained good coordination between carbon supply and demand when confronted with two growing seasons of drought.ConclusionsOur results emphasized that hydraulic failure plays the predominant role in causing tree death during highly intense drought, while whether "carbon starvation" occurs during tree mortality remains to be tested in longer (multi-year) but less intense drought.


Sign in / Sign up

Export Citation Format

Share Document