scholarly journals MULTI-OBJECTIVE SHIP’S CARGO HANDLING MODEL

Transport ◽  
2013 ◽  
Vol 30 (1) ◽  
pp. 55-60
Author(s):  
Mirano Hess ◽  
Svjetlana Hess

This paper proposes a new optimization model for ship’s cargo handling operations which solution gives the structure of cargo handling resources required, along with attaining the minimum total ‘in-port’ costs and the minimum of time required for completion of cargo operations. Due to complexity of the model which consists of composite multi-objective functions together with several decision variables and constraints, the solution has been sought by utilization of an adapted genetic algorithm combined with a hybrid algorithm. Testing of the model on real world data yielded acceptable results in a short time. In the course of decision making, the ship’s operator can, on the basis of the proposed model and taking into consideration shipping market data, choose appropriate variation of the returned solution, which incorporates minimum costs, minimum of operational time and related cargo handling resources.

2015 ◽  
Vol 23 (1) ◽  
pp. 69-100 ◽  
Author(s):  
Handing Wang ◽  
Licheng Jiao ◽  
Ronghua Shang ◽  
Shan He ◽  
Fang Liu

There can be a complicated mapping relation between decision variables and objective functions in multi-objective optimization problems (MOPs). It is uncommon that decision variables influence objective functions equally. Decision variables act differently in different objective functions. Hence, often, the mapping relation is unbalanced, which causes some redundancy during the search in a decision space. In response to this scenario, we propose a novel memetic (multi-objective) optimization strategy based on dimension reduction in decision space (DRMOS). DRMOS firstly analyzes the mapping relation between decision variables and objective functions. Then, it reduces the dimension of the search space by dividing the decision space into several subspaces according to the obtained relation. Finally, it improves the population by the memetic local search strategies in these decision subspaces separately. Further, DRMOS has good portability to other multi-objective evolutionary algorithms (MOEAs); that is, it is easily compatible with existing MOEAs. In order to evaluate its performance, we embed DRMOS in several state of the art MOEAs to facilitate our experiments. The results show that DRMOS has the advantage in terms of convergence speed, diversity maintenance, and portability when solving MOPs with an unbalanced mapping relation between decision variables and objective functions.


Author(s):  
Namrata Rani ◽  
Vandana Goyal ◽  
Deepak Gupta

This paper has been designed to introduce the method for solving the Bi-level Multi-objective (BL-MO) Fully Quadratic Fractional Optimization Model through Fuzzy Goal Programming (FGP) approach by utilising non-linear programming. In Fully Quadratic Fractional Optimization Model, the objective functions are in fractional form, having quadratic functions in both numerator and denominator subject to quadratic constraints set. The motive behind this paper is to provide a solution to solve the BL-MO optimization model in which number of decision-makers (DM) exists at two levels in the hierarchy. First, the fractional functions with fuzzy demand, which are in the form of fuzzy numbers, are converted into crisp models by applying the concept of α-cuts. After that, membership functions are developed which are corresponding to each decision-maker’s objective and converted into simpler form to avoid complications due to calculations. Finally, the model is simplified by applying FGP approach, and a compromised solution to the initial model is obtained. An algorithm, flowchart and example are also given at the end to explain the study of the proposed model.


2021 ◽  
Author(s):  
Israel Mayo-Molina ◽  
Juliana Y. Leung

Abstract The Steam Alternating Solvent (SAS) process has been proposed and studied in recent years as a new auspicious alternative to the conventional thermal (steam-based) bitumen recovery process. The SAS process incorporates steam and solvent (e.g. propane) cycles injected alternatively using the same configuration as the Steam-Assisted Gravity-Drainage (SAGD) process. The SAS process offers many advantages, including lower capital and operational cost, as well as a reduction in water usage and lower Greenhouse Gas (GHG) Emissions. On the other hand, one of the main challenges of this relatively new process is the influence of uncertain reservoir heterogeneity distribution, such as shale barriers, on production behaviour. Many complex physical mechanisms, including heat transfer, fluid flows, and mass transfer, must be coupled. A proper design and selection of the operational parameters must consider several conflicting objectives. This work aims to develop a hybrid multi-objective optimization (MOO) framework for determining a set of Pareto-optimal SAS operational parameters under a variety of heterogeneity scenarios. First, a 2-D homogeneous reservoir model is constructed based on typical Cold lake reservoir properties in Alberta, Canada. The homogeneous model is used to establish a base scenario. Second, different shale barrier configurations with varying proportions, lengths, and locations are incorporated. Third, a detailed sensitivity analysis is performed to determine the most impactful parameters or decision variables. Based on the results of the sensitivity analysis, several objective functions are formulated (e.g., minimizing energy and solvent usage). Fourth, Response Surface Methodology (RSM) is applied to generate a set of proxy models to approximate the non-linear relationship between the decision variables and the objective functions and to reduce the overall computational time. Finally, three Multi-Objective Evolutionary Algorithms (MOEAs) are applied to search and compare the optimal sets of decision parameters. The study showed that the SAS process is sensitive to the shale barrier distribution, and that impact is strongly dependent on the location and length of a specific shale barrier. When a shale barrier is located near the injector well, pressure and temperature may build up in the near-well area, preventing additional steam and solvent be injected and, consequently, reducing the oil production. Operational constraints, such as bottom-hole pressure, steam trap criterion, and bottom-hole gas rate in the producer, are among various critical decision variables examined in this study. A key conclusion is that the optimal operating strategy should depend on the underlying heterogeneity. Although this notion has been alluded to in other previous steam- or solvent-based studies, this paper is the first to utilize a MOO framework for systematically determining a specific optimal strategy for each heterogeneity scenario. With the advancement of continuous downhole fibre-optic monitoring, the outcomes can potentially be integrated into other real-time reservoir characterization and optimization work-flows.


2020 ◽  
Vol 55 (6) ◽  
Author(s):  
Ngo Tung Son

The article describes a new method to construct an enrollment-based course timetable in universities, based on a multi-objective optimization model. The model used mixed-integer and binary variables towards creating a schedule. It satisfies students' preferences for study time, with the number of students in the same class being optimal for training costs while ensuring timetabling business constraints. We use a combination of compromise programming and linear scalarizing to transform many objective functions into single-objective optimization. A scheme of the Genetic Algorithm was developed to solve the proposed model. The proposed method allows approaching several types of multi-objective combinatorial problems. The algorithm was tested by scheduling a study schedule for 3,000 students in the spring semester of 2020 at FPT University, Hanoi, Vietnam. The obtained results show the average students' preference level of 69%. More than 30% of students have a satisfaction level of more than 80% of the timetable after two hours of execution time.


2021 ◽  
Vol 93 (2) ◽  
pp. 311-318
Author(s):  
Ramazan Kursat Cecen

Purpose The purpose of this paper is to provide feasible and fast solutions for the multi-objective airport gate assignment problem (AGAP) considering both passenger-oriented and airline-oriented objectives, which is the total walking distance from gate to baggage carousels (TWD) and the total aircraft fuel consumption during taxi operations (TFC). In addition, obtaining feasible and near-optimal solutions in a short time reduces the gate planning time to be spent by air traffic controllers. Design/methodology/approach The mixed integer linear programming (MILP) approach is implemented to solve the multi-objective AGAP. The weighted sum approach technique was applied in the model to obtain non-dominated solutions. Because of the complexity of the problem, the simulated annealing (SA) algorithm was used for the proposed model. The results were compared with baseline results, which were obtained from the algorithm using the fastest gate assignment and baggage carousel combinations without any conflict taking place at the gate assignments. Findings The proposed model noticeably decreased both the TWD and TFC. The improvement of the TWD and TFC changed from 22.8% to 46.9% and from 4.7% to 7.1%, respectively, according to the priorities of the objectives. Additionally, the average number of non-dominated solutions was calculated as 6.94, which presents many feasible solutions for air traffic controllers to manage ground traffic while taking the airline and passenger objectives into consideration. Practical implications The proposed MILP model includes the objectives of different stakeholders: air traffic controllers, passengers and airlines. In addition, the proposed model can provide feasible gate and baggage carousel assignments together in a short time. Therefore, the model creates a flexibility for air traffic controllers to re-arrange assignments if any unexpected situations take place. Originality/value The proposed MILP model combines the TWD and TFC together for the AGAP problem using the SA. Moreover, the proposed model integrates passenger-oriented and airline-oriented objectives together and reveals the relationships between the objectives in only a short time.


Author(s):  
Amarjeet Prajapati

AbstractOver the past 2 decades, several multi-objective optimizers (MOOs) have been proposed to address the different aspects of multi-objective optimization problems (MOPs). Unfortunately, it has been observed that many of MOOs experiences performance degradation when applied over MOPs having a large number of decision variables and objective functions. Specially, the performance of MOOs rapidly decreases when the number of decision variables and objective functions increases by more than a hundred and three, respectively. To address the challenges caused by such special case of MOPs, some large-scale multi-objective optimization optimizers (L-MuOOs) and large-scale many-objective optimization optimizers (L-MaOOs) have been developed in the literature. Even after vast development in the direction of L-MuOOs and L-MaOOs, the supremacy of these optimizers has not been tested on real-world optimization problems containing a large number of decision variables and objectives such as large-scale many-objective software clustering problems (L-MaSCPs). In this study, the performance of nine L-MuOOs and L-MaOOs (i.e., S3-CMA-ES, LMOSCO, LSMOF, LMEA, IDMOPSO, ADC-MaOO, NSGA-III, H-RVEA, and DREA) is evaluated and compared over five L-MaSCPs in terms of IGD, Hypervolume, and MQ metrics. The experimentation results show that the S3-CMA-ES and LMOSCO perform better compared to the LSMOF, LMEA, IDMOPSO, ADC-MaOO, NSGA-III, H-RVEA, and DREA in most of the cases. The LSMOF, LMEA, IDMOPSO, ADC-MaOO, NSGA-III, and DREA, are the average performer, and H-RVEA is the worst performer.


Author(s):  
Abdelatif Sahraoui ◽  
Makhlouf Derdour ◽  
Bouchra Marzak

In urban areas, the cost of road congestion has paid great attention to the sociological, technological and environmental aspects, such as the optimal route and fuel consumption. This step is towards a smarter vehicle mobility where the travel time will be planned and dynamically adapted to changes with actual status of the traffic flow. In this article a multi-objective ACO algorithm is proposed to solve the daily carpooling problem. In particular, a set of decision variables are proposed in order to minimize three objective functions subject to a set of constraints on these objectives.


2022 ◽  
pp. 1-15
Author(s):  
E. Ammar ◽  
A. Al-Asfar

In real conditions, the parameters of multi-objective nonlinear programming (MONLP) problem models can’t be determined exactly. Hence in this paper, we concerned with studying the uncertainty of MONLP problems. We propose algorithms to solve rough and fully-rough-interval multi-objective nonlinear programming (RIMONLP and FRIMONLP) problems, to determine optimal rough solutions value and rough decision variables, where all coefficients and decision variables in the objective functions and constraints are rough intervals (RIs). For the RIMONLP and FRIMONLP problems solving methodology are presented using the weighting method and slice-sum method with Kuhn-Tucker conditions, We will structure two nonlinear programming (NLP) problems. In the first one of this NLP problem, all of its variables and coefficients are the lower approximation (LAI) it’s RIs. The second NLP problems are upper approximation intervals (UAI) of RIs. Subsequently, both NLP problems are sliced into two crisp nonlinear problems. NLP is utilized because numerous real systems are inherently nonlinear. Also, rough intervals are so important for dealing with uncertainty and inaccurate data in decision-making (DM) problems. The suggested algorithms enable us to the optimal solutions in the largest range of possible solution. Finally, Illustrative examples of the results are given.


2020 ◽  
Vol 39 (5) ◽  
pp. 6339-6350
Author(s):  
Esra Çakır ◽  
Ziya Ulukan

Due to the increase in energy demand, many countries suffer from energy poverty because of insufficient and expensive energy supply. Plans to use alternative power like nuclear power for electricity generation are being revived among developing countries. Decisions for installation of power plants need to be based on careful assessment of future energy supply and demand, economic and financial implications and requirements for technology transfer. Since the problem involves many vague parameters, a fuzzy model should be an appropriate approach for dealing with this problem. This study develops a Fuzzy Multi-Objective Linear Programming (FMOLP) model for solving the nuclear power plant installation problem in fuzzy environment. FMOLP approach is recommended for cases where the objective functions are imprecise and can only be stated within a certain threshold level. The proposed model attempts to minimize total duration time, total cost and maximize the total crash time of the installation project. By using FMOLP, the weighted additive technique can also be applied in order to transform the model into Fuzzy Multiple Weighted-Objective Linear Programming (FMWOLP) to control the objective values such that all decision makers target on each criterion can be met. The optimum solution with the achievement level for both of the models (FMOLP and FMWOLP) are compared with each other. FMWOLP results in better performance as the overall degree of satisfaction depends on the weight given to the objective functions. A numerical example demonstrates the feasibility of applying the proposed models to nuclear power plant installation problem.


2006 ◽  
Vol 34 (3) ◽  
pp. 170-194 ◽  
Author(s):  
M. Koishi ◽  
Z. Shida

Abstract Since tires carry out many functions and many of them have tradeoffs, it is important to find the combination of design variables that satisfy well-balanced performance in conceptual design stage. To find a good design of tires is to solve the multi-objective design problems, i.e., inverse problems. However, due to the lack of suitable solution techniques, such problems are converted into a single-objective optimization problem before being solved. Therefore, it is difficult to find the Pareto solutions of multi-objective design problems of tires. Recently, multi-objective evolutionary algorithms have become popular in many fields to find the Pareto solutions. In this paper, we propose a design procedure to solve multi-objective design problems as the comprehensive solver of inverse problems. At first, a multi-objective genetic algorithm (MOGA) is employed to find the Pareto solutions of tire performance, which are in multi-dimensional space of objective functions. Response surface method is also used to evaluate objective functions in the optimization process and can reduce CPU time dramatically. In addition, a self-organizing map (SOM) proposed by Kohonen is used to map Pareto solutions from high-dimensional objective space onto two-dimensional space. Using SOM, design engineers see easily the Pareto solutions of tire performance and can find suitable design plans. The SOM can be considered as an inverse function that defines the relation between Pareto solutions and design variables. To demonstrate the procedure, tire tread design is conducted. The objective of design is to improve uneven wear and wear life for both the front tire and the rear tire of a passenger car. Wear performance is evaluated by finite element analysis (FEA). Response surface is obtained by the design of experiments and FEA. Using both MOGA and SOM, we obtain a map of Pareto solutions. We can find suitable design plans that satisfy well-balanced performance on the map called “multi-performance map.” It helps tire design engineers to make their decision in conceptual design stage.


Sign in / Sign up

Export Citation Format

Share Document