The Horizontal Deformation Analysis of High-rise Buildings

Author(s):  
Žymantas Gražulis ◽  
Boleslovas Krikštaponis ◽  
Algirdas Neseckas ◽  
Darius Popovas ◽  
Raimundas Putrimas ◽  
...  

The horizontal deformation analysis of high-rise buildings, quite often is complicated because buildings like chimneys, towers and etc, have complex and asymmetric shapes, consequently there is not always the possibility to apply the method of single points motion analysis. Furthermore, the horizontal deformation analysis is complicated using standard measurement methods like measurements with electronic total stations or optical theodolites. In such case the terrestrial laser scanner could be superior to traditional measurements. However, the terrestrial laser scanner still not widely used to survey building horizontal deformations using high precision measurements. The main aim of this work is to determine the suitability to measure deflections of buildings from the vertical using terrestrial laser scanners and to investigate point cloud data processing. Measurements of horizontal deformation were carried out using the over ground laser scanner and electronic total station. Horizontal deformations of chimneys of thermal power plants were investigated using corresponding methods. Deformation indicators and evaluated measurement accuracies between different methods were compared. Data analysis of terrestrial laser scanning is more complex, time consuming and requires sophisticated hardware resources in comparison with the traditional methods, however results are much more detailed and informative.

2018 ◽  
Vol 36 (2) ◽  
pp. 122-136 ◽  
Author(s):  
Abdul Fatah Firdaus Abu Hanipah ◽  
Khairul Nizam Tahar

Purpose Laser scanning technique is used to measure and model objects using point cloud data generated laser pulses. Conventional techniques to construct 3D models are time consuming, costly and need more manpower. The purpose of this paper is to assess the 3D model of the Sultan Salahuddin Abdul Aziz Shah Mosque’s main dome using a terrestrial laser scanner. Design/methodology/approach A laser scanner works through line of sight, which indicates that multiple scans need to be taken from a different view to ensure a complete data set. Targets must spread in all directions, and targets should be placed on fixed structures and flat surfaces for the normal scan and fine scan. After the scanning operation, point cloud data from the laser scanner were cleaned and registered before a 3D model could be developed. Findings As a result, the reconstruction of the 3D model was successfully developed. The samples are based on the triangle dimension, curve line, horizontal dimension and vertical dimension at the dome. The standard deviation and accuracy are calculated based on the comparison of the 21 samples taken between the high-resolution and low-resolution scanning data. Originality/value There are many ways to develop the 3D model and based on this study, the less complex ways also produce the best result. The authors implement the different types of dimensions for the 3D model assessment, which have not yet been considered in the past.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 201
Author(s):  
Michael Bekele Maru ◽  
Donghwan Lee ◽  
Kassahun Demissie Tola ◽  
Seunghee Park

Modeling a structure in the virtual world using three-dimensional (3D) information enhances our understanding, while also aiding in the visualization, of how a structure reacts to any disturbance. Generally, 3D point clouds are used for determining structural behavioral changes. Light detection and ranging (LiDAR) is one of the crucial ways by which a 3D point cloud dataset can be generated. Additionally, 3D cameras are commonly used to develop a point cloud containing many points on the external surface of an object around it. The main objective of this study was to compare the performance of optical sensors, namely a depth camera (DC) and terrestrial laser scanner (TLS) in estimating structural deflection. We also utilized bilateral filtering techniques, which are commonly used in image processing, on the point cloud data for enhancing their accuracy and increasing the application prospects of these sensors in structure health monitoring. The results from these sensors were validated by comparing them with the outputs from a linear variable differential transformer sensor, which was mounted on the beam during an indoor experiment. The results showed that the datasets obtained from both the sensors were acceptable for nominal deflections of 3 mm and above because the error range was less than ±10%. However, the result obtained from the TLS were better than those obtained from the DC.


Author(s):  
Jovana Radović

Within the last years terrestrial and airborne laser scanning has become a powerful technique for fast and efficient three-dimensional data acquisition of different kinds of objects. Airborne laser system (LiDAR) collects accurate georeferenced data of extremely large areas very quickly while the terrestrial laser scanner produces dense and geometrically accurate data. The combination of these two segments of laser scanning provides different areas of application. One of the applications is in the process of reconstruction of objects. Objects recorded with laser scanning technology and transferred into the final model represent the basis for building an object as it was original. In this paper, there will be shown two case studies based on usage of airborne and terrestrial laser scanning and processing of the data collected by them.


2013 ◽  
Vol 405-408 ◽  
pp. 3032-3036
Author(s):  
Yi Bo Sun ◽  
Xin Qi Zheng ◽  
Zong Ren Jia ◽  
Gang Ai

At present, most of the commercial 3D laser scanning measurement systems do work for a large area and a big scene, but few shows their advantage in the small area or small scene. In order to solve this shortage, we design a light-small mobile 3D laser scanning system, which integrates GPS, INS, laser scanner and digital camera and other sensors, to generate the Point Cloud data of the target through data filtering and fusion. This system can be mounted on airborne or terrestrial small mobile platform and enables to achieve the goal of getting Point Cloud data rapidly and reconstructing the real 3D model. Compared to the existing mobile 3D laser scanning system, the system we designed has high precision but lower cost, smaller hardware and more flexible.


2019 ◽  
Vol 284 ◽  
pp. 08007
Author(s):  
Joanna A. Pawłowicz

3D terrestrial laser scanning (TLS) is a modern measurement technique which enables to obtain a large amount of data in short time. The gathered data is very detailed, thus the scope of its use is vast. Therefore scanners other measurement devices which results in considerable acceleration of stock-taking work. This approach enables to prepare a documentation of a building or to make an assessment of its technical condition using only a 3D cloud of points. Additionally, flexibility of data and advanced computer programmes make it possible to use such data in many sectors, not only in the building trade. The paper shows the issue of using a 3D terrestrial laser scanner ant the TLS (Terrestrial Laser Scanning) technique for identification and measurement of damaged elements on the example of a historical sacral building.


2019 ◽  
Vol 13 (2) ◽  
pp. 105-134 ◽  
Author(s):  
Mohammad Omidalizarandi ◽  
Boris Kargoll ◽  
Jens-André Paffenholz ◽  
Ingo Neumann

Abstract In the last two decades, the integration of a terrestrial laser scanner (TLS) and digital photogrammetry, besides other sensors integration, has received considerable attention for deformation monitoring of natural or man-made structures. Typically, a TLS is used for an area-based deformation analysis. A high-resolution digital camera may be attached on top of the TLS to increase the accuracy and completeness of deformation analysis by optimally combining points or line features extracted both from three-dimensional (3D) point clouds and captured images at different epochs of time. For this purpose, the external calibration parameters between the TLS and digital camera needs to be determined precisely. The camera calibration and internal TLS calibration are commonly carried out in advance in the laboratory environments. The focus of this research is to highly accurately and robustly estimate the external calibration parameters between the fused sensors using signalised target points. The observables are the image measurements, the 3D point clouds, and the horizontal angle reading of a TLS. In addition, laser tracker observations are used for the purpose of validation. The functional models are determined based on the space resection in photogrammetry using the collinearity condition equations, the 3D Helmert transformation and the constraint equation, which are solved in a rigorous bundle adjustment procedure. Three different adjustment procedures are developed and implemented: (1) an expectation maximization (EM) algorithm to solve a Gauss-Helmert model (GHM) with grouped t-distributed random deviations, (2) a novel EM algorithm to solve a corresponding quasi-Gauss-Markov model (qGMM) with t-distributed pseudo-misclosures, and (3) a classical least-squares procedure to solve the GHM with variance components and outlier removal. The comparison of the results demonstrates the precise, reliable, accurate and robust estimation of the parameters in particular by the second and third procedures in comparison to the first one. In addition, the results show that the second procedure is computationally more efficient than the other two.


2012 ◽  
Vol 256-259 ◽  
pp. 2315-2319
Author(s):  
Wen Long Liu ◽  
Xiao Ping Zhao ◽  
Xiao Long Wang ◽  
Bao Guo Xu ◽  
De Tao Lv

This paper makes use of the three-dimensional laser scanning technology measurement speed and high precision which combines the advantage of the field control survey, coordinate system transformation, the point cloud data processing, establish the triangle nets, texture mapping etc process, get the space of ancient cultural relics data and texture, antiquities for 3D modeling provide real, real size, real texture digital model for reference.


2011 ◽  
Vol 84-85 ◽  
pp. 461-465
Author(s):  
Tao Chen ◽  
Shuai Jing Wu ◽  
Jian Wei Shang ◽  
Lang Wei

A method based on the 3D laser scanning is proposed for obtaining and analyzing the windshield's deformation in vehicle-pedestrian accident. With an actual traffic accident of vehicle-pedestrian collision taken for example, point cloud data of windshield’s deformation is scanned by EXAScan 3D laser scanner and the deformed 3D NURBS surface is obtained after fitting process. Based on the discussion about characteristics of curved surface of the vehicle’s front windshield and the principle of continuous curvature, this paper conducts a surface fitting with cubic non-uniform spline according to geometric information of grid surface around the deformation zone, and obtains the pre-deformed surface of windshield by sampling with spline curve. Compared with the pre-deformed surface of vehicle’s windshield, the maximum deformation depth is 48.509mm and its area is 0.3816m2on the right side, while the maximum deformation depth is 36.341mm and its area is 0.2529m2on the left side. The application results in actual traffic accident show that this method can be used to obtain 3D deformation information of overall impact area, which provide a new method for accurately inspecting the windshield’s deformation in vehicle-pedestrian accident. This method also provides a new research idea for quantitative saving the evidence in permanent, and it also has a great value in accident analysis and reconstruction.


Sign in / Sign up

Export Citation Format

Share Document