scholarly journals STRESSING STATE ANALYSIS OF LARGE CURVATURE CONTINUOUS PRESTRESSED CONCRETE BOX-GIRDER BRIDGE MODEL

2019 ◽  
Vol 25 (5) ◽  
pp. 411-421 ◽  
Author(s):  
Jun Shi ◽  
Jiyang Shen ◽  
Guangchun Zhou ◽  
Fengjiang Qin ◽  
Pengcheng Li

This paper experimentally analyzes the working behavior characteristics of a large-curvature continuous prestressed concrete box-girder (CPCBG) bridge model based on structural stressing state theory. First, the measured strain data is modeled as generalized strain energy density (GSED) to characterize the stressing state of the bridge model. Then, the Mann-Kendall (M-K) criterion is adopted to detect the stressing state leaps of the bridge model according to the natural law from quantitative change to qualitative change of a system, which derives the new definition of structural failure load. Correspondingly, the stressing state modes for the bridge model’s sections and internal forces are proposed to verify their changing characteristics and the coordinate working behavior around the characteristic loads. The analytical results reveal the working behavior characteristics of the bridge mode unseen in traditional structural analysis, which provides a new angle of view to conduct structural analysis and a reference to the improvement of design codes.

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4671
Author(s):  
Shuo Liu ◽  
Yi Zhang ◽  
Jun Shi ◽  
Baisong Yang

This paper analyzes the working behavior characteristics of a prestressed concrete transverse large cantilever continuous (PCTLCC) box girder bridge model based on structural stressing state theory and the numerical shape function (NSF) method. At first, the normalized generalized strain energy density (GSED) is established to model the stressing state of the bridge model. Subsequently, the Mann Kendall (M–K) criterion is applied to detect three characteristic loads, respectively, elastic–plastic branch load P (200 kN), failure load Q (300 kN), and progressive failure load H (340 kN), and the failure load Q is found to be the starting load of the damage process of the bridge model, rather than the ultimate load where the structure has been destroyed. Finally, the NSF method is adopted to interpolate the test data, and a detailed analysis for the variation characteristics of the working behavior of the bridge model under loads is performed based on the interpolation results. The characteristic load detection method and experimental data extension method for PCTLCC box girder bridge established in this study can provide valuable references for the design and analysis of such bridges.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1841
Author(s):  
Jun Shi ◽  
Jiyang Shen ◽  
Xiaohui Yu ◽  
Junran Liu ◽  
Guangchun Zhou ◽  
...  

This paper experimentally investigates the working behavior characteristics of an integral abutment curved box-girder (IACBG) bridge model based on the structural stressing state theory. First, the stressing state of the bridge model is represented by generalized strain energy density (GSED) values at each load Fj and characterized by the normalized GSED sum Ej,norm. Then, the Mann-Kendall (M-K) criterion is adopted to detect the stressing state mutations of the bridge model from Ej,norm-Fj curve in order to achieve the new definition of structural failure load. Correspondingly, the stressing state modes for the bridge model’s sections and internal forces are reached in order to investigate their variation characteristics and the coordinated working behavior around the updated failure load. The unseen knowledge is revealed by studying working behavior characteristics of the bridge model. Therefore, the analytical results could provide a new structural analysis method, which updates the definition of the existing structural failure load and provides a reference for future design of the bridges.


2010 ◽  
Vol 163-167 ◽  
pp. 2369-2375 ◽  
Author(s):  
Ming Yuan ◽  
Dong Huang Yan

The stress state of finished bridge and service stage is influenced by various closure schemes in cantilever construction of multi-span prestressed concrete box-girder bridge. Two typical bridges—multi-span prestressed concrete continuous rigid frame bridge and girder bridge are investigated, The stress state in different closure schemes are analyzed using finite element(FE) analysis. Meanwhile, compared the healthy monitoring data, it has been found that taking the closure sequence from side span to middle span in cantilever construction of multi-span prestressed concrete box-girder bridge can lower stress of girder and pier in finished bridge stage, as well as reducing deformation of girder in service stage. Hence, the closure sequence from side span to middle span is more suitable for cantilever construction of multi-span prestressed concrete box-girder bridge.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Wei Ji ◽  
Kui Luo ◽  
Jingwei Zhang

Prestressed concrete (PC) girders with corrugated steel webs (CSWs) have received considerable attention in the past two decades due to their light self-weight and high prestressing efficiency. Most previous studies were focused on the static behavior of CSWs and simple beams with CSWs. The calculation of deflection is an important part in the static analysis of structures. However, very few studies have been conducted to investigate the deflection of full PC girders or bridges with CSWs and no simple formulas are available for estimating their deflection under static loads. In addition, experimental work on full-scale bridges or scale bridge models with CSWs is very limited. In this paper, a formula for calculating the deflection of PC box girders with CSWs is derived. The longitudinal displacement function of PC box girders with CSWs, which can consider the shear lag effect and shear deformation of CSWs, is first derived. Based on the longitudinal displacement function, the formula for predicting the deflection of PC box girders with CSWs is derived using the variational principle method. The accuracy of the derived formula is verified against experimental results from a scaled bridge model and the finite element analysis results. Parametric studies are also performed, and the influences of shear lag and shear deformation on the deflection of the box girder with CSWs are investigated by considering different width-to-span ratios and different girder heights. The present study provides an effective and efficient tool for determining the deflection of PC box girders with CSWs.


Sign in / Sign up

Export Citation Format

Share Document