scholarly journals The numerical analysis of the long-term behaviour of the reinforced concrete beams strengthened with carbon fiber reinforced polymer: Deflection

Author(s):  
Mykolas Daugevičius ◽  
Juozas Valivonis ◽  
Tomas Skuturna

The numerical analysis of the reinforced concrete beams strengthened with CFRP is presented. The beams previously tested experimentally under long-term loading are selected for numerical simulation. The numerical modelling is performed by evaluating the beam’s work at various stages: the work stage before the long-term loading period, the work stage under the long-term load action, the work stage when the external load is removed and the work stage until failure. The work stages of all modelled beams are described in more detail. To analyse the behaviour of beams at different work stages, the numerical modelling using the phase analysis is performed. Different finite element groups are evaluated in each phase of analysis. The external load is increased, maintained and reduced. The finite elements of the CFRP layer are activated at a certain work stage for evaluating the strengthening effect. To assess the accuracy of the numerical analysis, each beam is modelled from the finite elements of various sizes. The paper presents the process of the numerical modelling and the predicted deflections. The numerically predicted deflections are compared with the deflections of the experimental study. The modelling of the behaviour of the strengthened beams has shown that the nature of the long-term deflection differs from that obtained in the experiment. The increment of the numerically predicted deflection decreases gradually over the long-term period. Meanwhile, the experimental long-term deflection increment is characterised by the sharp increase and decrease at the start of the long-term period. This contradiction shows that the experimental long-term deflections are greater. However, over time, the numerical model deflections may reach and exceed the experimental deflections due to steady increase. The smaller size of the finite elements causes the increase in the cracking moment and the higher moment when the yielding of the tensioned reinforcement occurs. However, the cracking moment obtained by the numerical modelling is much higher than that obtained by the experimental modelling. However, when the yielding strength of the tensile reinforcement is reached, the considered moment is smaller than the experimental one.

Author(s):  
Mykolas Daugevičius ◽  
Juozas Valivonis ◽  
Tomas Skuturna

The paper presents the analysis of the long-term deformability of the reinforced concrete beams strengthened with CFRP. The analysis is based on the obtained numerical and experimental data. The development of deformations is divided into stages. The comparison of the cracking process in the compressed and tensioned areas is performed. The comparative analysis of the results has shown that more attention should be paid to the creep of concrete and the influence of the tensioned reinforcement when the external load is decreased. The study has shown that the compression of the section subjected to long-term loading turns into tension when the external load is removed. Due to the effect of the tensile force, cracks appear on the top of the compressed section. Therefore, re-loading of the beam requires further evaluation of the strength degradation in the concrete of the compressed area.


2018 ◽  
Vol 176 ◽  
pp. 593-607 ◽  
Author(s):  
Sindy Seara-Paz ◽  
Belén González-Fonteboa ◽  
Fernando Martínez-Abella ◽  
Diego Carro-López

2013 ◽  
Vol 577-578 ◽  
pp. 281-284 ◽  
Author(s):  
Oldrich Sucharda ◽  
Jiri Brozovsky ◽  
David Mikolášek

This paper discusses the fracture-plastic material models for reinforced concrete and use of this model for modelling of reinforced concrete beams. Load-displacement relations and bearing capacity of reinforced concrete beams will be evaluated. A series of original (own) experiments - the beam and data from completed experiments - have been chosen for the numerical modelling. In case of the original experiments - reinforced concrete beams, stochastic modelling based on LHS (Latin Hypercube Sampling) will be carried out in order to estimate the total bearing capacity. The software used for the fracture-plastic model for reinforced concrete is ATENA.


Sign in / Sign up

Export Citation Format

Share Document