scholarly journals ROBUST DIFFERENCE SCHEME FOR THE CAUCHY PROBLEM FOR A SINGULARLY PERTURBED ORDINARY DIFFERENTIAL EQUATION

2018 ◽  
Vol 23 (4) ◽  
pp. 527-537 ◽  
Author(s):  
Lidia Pavlovna Shishkina ◽  
Grigorii Ivanovich Shishkin

Grid approximation of the Cauchy problem on the interval D = {0 ≤ x ≤ d} is first studied for a linear singularly perturbed ordinary differential equation of the first order with a perturbation parameter ε multiplying the derivative in the equation where the parameter ε takes arbitrary values in the half-open interval (0, 1]. In the Cauchy problem under consideration, for small values of the parameter ε, a boundary layer of width O(ε) appears on which the solution varies by a finite value. It is shown that, for such a Cauchy problem, the solution of the standard difference scheme on a uniform grid does not converge ε-uniformly in the maximum norm; convergence occurs only under the condition h ε, where h = d N −1 , N is the number of grid intervals, h is the grid step-size. Taking into account the behavior of the singular component in the solution, a special piecewise-uniform grid is constructed that condenses in a neighborhood of the boundary layer. It is established that the standard difference scheme on such a special grid converges ε-uniformly in the maximum norm at the rate O(N −1 lnN). Such a scheme is called a robust one. For a model Cauchy problem for a singularly perturbed ordinary differential equation, standard difference schemes on a uniform grid (a classical difference scheme) and on a piecewise-uniform grid (a special difference scheme) are constructed and investigated. The results of numerical experiments are given, which are consistent with theoretical results.

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2113
Author(s):  
Alla A. Yurova ◽  
Artyom V. Yurov ◽  
Valerian A. Yurov

We begin by introducing a new procedure for construction of the exact solutions to Cauchy problem of the real-valued (hyperbolic) Novikov–Veselov equation which is based on the Moutard symmetry. The procedure shown therein utilizes the well-known Airy function Ai(ξ) which in turn serves as a solution to the ordinary differential equation d2zdξ2=ξz. In the second part of the article we show that the aforementioned procedure can also work for the n-th order generalizations of the Novikov–Veselov equation, provided that one replaces the Airy function with the appropriate solution of the ordinary differential equation dn−1zdξn−1=ξz.


2014 ◽  
Vol 144 (6) ◽  
pp. 1191-1244 ◽  
Author(s):  
Luigi Ambrosio ◽  
Gianluca Crippa

In this paper we review many aspects of the well-posedness theory for the Cauchy problem for the continuity and transport equations and for the ordinary differential equation (ODE). In this framework, we deal with velocity fields that are not smooth, but enjoy suitable ‘weak differentiability’ assumptions. We first explore the connection between the partial differential equation (PDE) and the ODE in a very general non-smooth setting. Then we address the renormalization property for the PDE and prove that such a property holds for Sobolev velocity fields and for bounded variation velocity fields. Finally, we present an approach to the ODE theory based on quantitative estimates.


2006 ◽  
Vol 04 (03) ◽  
pp. 247-262 ◽  
Author(s):  
ALBERTO BRESSAN ◽  
WEN SHEN

We consider the Cauchy problem for an ordinary differential equation with discontinuous right-hand side in an L∞ space. Under the assumptions that the vector field is directionally continuous with bounded directional variation, we prove that the O.D.E. has a unique Carathéodory solution, which depends Lipschitz continuously on the data.


2021 ◽  
Vol 19 (1) ◽  
pp. 244-258
Author(s):  
Burkhan T. Kalimbetov ◽  
Olim D. Tuychiev

Abstract In this paper, the regularization method of S. A. Lomov is generalized to integro-differential equations with rapidly oscillating coefficients and with a rapidly oscillating right-hand side. The main goal of the work is to reveal the influence of the oscillating components on the structure of the asymptotics of the solution of this problem. The case of coincidence of the frequencies of a rapidly oscillating coefficient and a rapidly oscillating inhomogeneity is considered. In this case, only the identical resonance is observed in the problem. Other cases of the relationship between frequencies can lead to so-called non-identical resonances, the study of which is nontrivial and requires the development of a new approach. It is supposed to study these cases in our further work.


Author(s):  
Burkhan Kalimbetov

In this paper we consider initial problem for an ordinary differential equation of fractional order with a small parameter for the derivative. S.A. Lomov regularization method is used to construct an asymptotic approximate solution of the problem with accuracy up to any power of a small parameter. Using the computer mathematics system (CMS) Maple, a symbolic solution of the original problem is obtained, and solution schedules are constructed, depending on the initial data and various values of the small parameter. It is shown that the asymptotic solution presented in the form of a specific convergent series and the solution represented by the CMS Maple coincides with the exact solution of the original problem. 


Sign in / Sign up

Export Citation Format

Share Document