scholarly journals HOW AGN JETS HEAT THE INTRACLUSTER MEDIUM—INSIGHTS FROM HYDRODYNAMIC SIMULATIONS

2016 ◽  
Vol 829 (2) ◽  
pp. 90 ◽  
Author(s):  
H.-Y. Karen Yang ◽  
Christopher S. Reynolds
2020 ◽  
Vol 500 (4) ◽  
pp. 5072-5087
Author(s):  
Rajsekhar Mohapatra ◽  
Christoph Federrath ◽  
Prateek Sharma

ABSTRACT Turbulent gas motions are observed in the intracluster medium (ICM). The ICM is density-stratified, with the gas density being highest at the centre of the cluster and decreasing radially outwards. As a result of this, Kolmogorov (homogeneous, isotropic) turbulence theory does not apply to the ICM. The gas motions are instead explained by anisotropic stratified turbulence, with the stratification quantified by the perpendicular Froude number (Fr⊥). These turbulent motions are associated with density and pressure fluctuations, which manifest as perturbations in X-ray surface brightness maps of the ICM and as thermal Sunyaev–Zeldovich effect (SZ) fluctuations, respectively. In order to advance our understanding of the relations between these fluctuations and the turbulent gas velocities, we have conducted 100 high-resolution hydrodynamic simulations of stratified turbulence (2562 × 384–10242 × 1536 resolution elements), in which we scan the parameter space of subsonic rms Mach number ($\mathcal {M}$), Fr⊥, and the ratio of entropy and pressure scale heights (RPS = HP/HS), relevant to the ICM. We develop a new scaling relation between the standard deviation of logarithmic density fluctuations (σs, where s = ln (ρ/$\langle$ρ$\rangle$)), $\mathcal {M}$, and Fr⊥, which covers both the strongly stratified (Fr⊥ ≪ 1) and weakly stratified (Fr⊥ ≫ 1) turbulence regimes: $\sigma _{\rm s}^2=\ln (1+b^2\mathcal {M}^4+0.10/(\mathrm{Fr}_\perp +0.25/\sqrt{\mathrm{Fr}_\perp })^2\mathcal {M}^2R_{\rm PS})$, where b ∼ 1/3 for solenoidal turbulence driving studied here. We further find that logarithmic pressure fluctuations σ(ln P/ < P >) are independent of stratification and scale according to the relation $\sigma _{(\ln {\bar{P}})}^2=\ln (1+b^2\gamma ^2\mathcal {M}^4)$, where $\bar{P}=P/\left\langle P \right\rangle $ and γ is the adiabatic index of the gas. We have tested these scaling relations to be valid over the parameter ranges $\mathcal {M} = 0.01$–0.40, Fr⊥ = 0.04–10.0, and RPS = 0.33–2.33.


2021 ◽  
Vol 508 (2) ◽  
pp. 1777-1787
Author(s):  
Eric J Baxter ◽  
Susmita Adhikari ◽  
Jesús Vega-Ferrero ◽  
Weiguang Cui ◽  
Chihway Chang ◽  
...  

ABSTRACT Gas infalling into the gravitational potential wells of massive galaxy clusters is expected to experience one or more shocks on its journey to becoming part of the intracluster medium (ICM). These shocks are important for setting the thermodynamic properties of the ICM and can therefore impact cluster observables such as X-ray emission and the Sunyaev–Zel’dovich (SZ) effect. We investigate the possibility of detecting signals from cluster shocks in the averaged thermal SZ profiles of galaxy clusters. Using zoom-in hydrodynamic simulations of massive clusters from the Three Hundred Project, we show that if cluster SZ profiles are stacked as a function of R/R200m, shock-induced features appear in the averaged SZ profile. These features are not accounted for in standard fitting formulae for the SZ profiles of galaxy clusters. We show that the shock features should be detectable with samples of clusters from ongoing and future SZ surveys. We also demonstrate that the location of these features is correlated with the cluster accretion rate, as well as the location of the cluster splashback radius. Analyses of ongoing and future surveys, such as SPT-3g, AdvACT, Simons Observatory, and CMB-S4, which include gas shocks will gain a new handle on the properties and dynamics of the outskirts of massive haloes, both in gas and in mass.


2008 ◽  
Vol 17 (10) ◽  
pp. 1953-1959
Author(s):  
F. ALOUANI BIBI ◽  
J. BINNEY

We consider the effect of thermal conduction along with AGN jet feedback on the intracluster medium (ICM) in cooling flow clusters. A series of three-dimensional AMR hydrodynamic simulations has been carried out to analyze the dynamic of such interaction. We show the limit of applicability of the Spitzer thermal conduction during jet/ICM interaction.


2008 ◽  
Vol 685 (2) ◽  
pp. 1069-1088 ◽  
Author(s):  
Christian D. Ott ◽  
Adam Burrows ◽  
Luc Dessart ◽  
Eli Livne

Author(s):  
Carolina Villarreal D’Angelo ◽  
Aline A Vidotto ◽  
Alejandro Esquivel ◽  
Gopal Hazra ◽  
Allison Youngblood

Abstract The GJ 436 planetary system is an extraordinary system. The Neptune-size planet that orbits the M3 dwarf revealed in the Lyα line an extended neutral hydrogen atmosphere. This material fills a comet-like tail that obscures the stellar disc for more than 10 hours after the planetary transit. Here, we carry out a series of 3D radiation hydrodynamic simulations to model the interaction of the stellar wind with the escaping planetary atmosphere. With these models, we seek to reproduce the $\sim 56\%$ absorption found in Lyα transits, simultaneously with the lack of absorption in Hα transit. Varying the stellar wind strength and the EUV stellar luminosity, we search for a set of parameters that best fit the observational data. Based on Lyα observations, we found a stellar wind velocity at the position of the planet to be around [250-460] km s−1 with a temperature of [3 − 4] × 105 K. The stellar and planetary mass loss rates are found to be 2 × 10−15 M⊙ yr−1 and ∼[6 − 10] × 109 g s−1, respectively, for a stellar EUV luminosity of [0.8 − 1.6] × 1027 erg s−1. For the parameters explored in our simulations, none of our models present any significant absorption in the Hα line in agreement with the observations.


2021 ◽  
Vol 11 (8) ◽  
pp. 3378
Author(s):  
Jie Chen ◽  
Darby J. Luscher ◽  
Saryu J. Fensin

A void coalescence term was proposed as an addition to the original void nucleation and growth (NAG) model to accurately describe void evolution under dynamic loading. The new model, termed as modified void nucleation and growth model (MNAG model), incorporated analytic equations to explicitly account for the evolution of the void number density and the void volume fraction (damage) during void nucleation, growth, as well as the coalescence stage. The parameters in the MNAG model were fitted to molecular dynamics (MD) shock data for single-crystal and nanocrystalline Ta, and the corresponding nucleation, growth, and coalescence rates were extracted. The results suggested that void nucleation, growth, and coalescence rates were dependent on the orientation as well as grain size. Compared to other models, such as NAG, Cocks–Ashby, Tepla, and Tonks, which were only able to reproduce early or later stage damage evolution, the MNAG model was able to reproduce all stages associated with nucleation, growth, and coalescence. The MNAG model could provide the basis for hydrodynamic simulations to improve the fidelity of the damage nucleation and evolution in 3-D microstructures.


2020 ◽  
Vol 15 (S359) ◽  
pp. 178-179
Author(s):  
Saqib Hussain ◽  
Rafael Alves Batista ◽  
Elisabete Maria de Gouveia Dal Pino ◽  
Klaus Dolag

AbstractWe present results of the propagation of high-energy cosmic rays (CRs) and their secondaries in the intracluster medium (ICM). To this end, we employ three-dimensional cosmological magnetohydrodynamical simulations of the turbulent intergalactic medium to explore the propagation of CRs with energies between 1014 and 1019 eV. We study the interaction of test particles with this environment considering all relevant electromagnetic, photohadronic, photonuclear, and hadronuclear processes. Finally, we discuss the consequences of the confinement of high-energy CRs in clusters for the production of gamma rays and neutrinos.


Sign in / Sign up

Export Citation Format

Share Document