scholarly journals The Swift UVOT Stars Survey. III. Photometry and Color–Magnitude Diagrams of 103 Galactic Open Clusters

2019 ◽  
Vol 158 (1) ◽  
pp. 35 ◽  
Author(s):  
Michael H. Siegel ◽  
Samuel J. LaPorte ◽  
Blair L. Porterfield ◽  
Lea M. Z. Hagen ◽  
Caryl A. Gronwall
Keyword(s):  
1967 ◽  
Vol 31 ◽  
pp. 41-43
Author(s):  
Th. Schmidt-Kaler ◽  
R. Schwartz

Neutral hydrogen is found in every young cluster observed, usually extending beyond the optical diameter, and in some cases showing expanding motions.


1998 ◽  
Vol 506 (1) ◽  
pp. 347-359 ◽  
Author(s):  
David Barrado y Navascués ◽  
John R. Stauffer ◽  
Sofia Randich

Author(s):  
Ataru Tanikawa ◽  
Tomoya Kinugawa ◽  
Jun Kumamoto ◽  
Michiko S Fujii

Abstract We estimate formation rates of LB-1-like systems through dynamical interactions in the framework of the theory of stellar evolution before the discovery of the LB-1 system. The LB-1 system contains a ∼70 ${M_{\odot}}$ black hole (BH), a so-called pair instability (PI) gap BH, and a B-type star with solar metallicity, and has nearly zero eccentricity. The most efficient formation mechanism is as follows. In an open cluster, a naked helium star (with ∼20 ${M_{\odot}}$) collides with a heavy main sequence star (with ∼50 ${M_{\odot}}$) which has a B-type companion. The collision results in a binary consisting of the collision product and the B-type star with a high eccentricity. The binary can be circularized through the dynamical tide with radiative damping of the collision product envelope. Finally, the collision product collapses to a PI-gap BH, avoiding pulsational pair instability and pair instability supernovae because its He core is as massive as the pre-colliding naked He star. We find that the number of LB-1-like systems in the Milky Way galaxy is ∼0.01(ρoc/104 ${M_{\odot}}$ pc−3), where ρoc is the initial mass densities of open clusters. If we take into account LB-1-like systems with O-type companion stars, the number increases to ∼0.03(ρoc/104 ${M_{\odot}}$ pc−3). This mechanism can form LB-1-like systems at least ten times more efficiently than the other mechanisms: captures of B-type stars by PI-gap BHs, stellar collisions between other types of stars, and stellar mergers in hierarchical triple systems. We conclude that no dynamical mechanism can explain the presence of the LB-1 system.


2020 ◽  
Vol 132 (1009) ◽  
pp. 034502 ◽  
Author(s):  
ChaoJie Hao ◽  
Ye Xu ◽  
ZhenYu Wu ◽  
ZhiHong He ◽  
ShuaiBo Bian

2021 ◽  
Vol 366 (7) ◽  
Author(s):  
B. Akbulut ◽  
S. Ak ◽  
T. Yontan ◽  
S. Bilir ◽  
T. Ak ◽  
...  
Keyword(s):  

1983 ◽  
Vol 6 ◽  
pp. 109-117 ◽  
Author(s):  
R.D. Cannon

In this review I shall concentrate mainly on globular star clusters in our Galaxy since these are the objects for which most work has been done recently, both observationally and theoretically. However, I shall also discuss briefly the oldest open clusters and clusters in the Magellanic Clouds. Little can be said about more distant cluster systems, since the only observations available are of integrated colours or spectra and these seem to be rather unreliable indicators of age. It is perhaps worth pointing out that the title may be slightly misleading; the problem is not so much to determine the ages of clusters of known abundances, as to obtain the best simultaneous solution for both age and composition, since some of the most important abundances (notably helium and oxygen) are virtually unobservable in little-evolved low mass stars.


1998 ◽  
Vol 11 (1) ◽  
pp. 430-432
Author(s):  
Ted Von Hippel

The study of cluster white dwarfs (WDs) has been invigorated recently bythe Hubble Space Telescope (HST). Recent WD studies have been motivated by the new and independent cluster distance (Renzini et al. 1996), age (von Hippel et al. 1995; Richer et al. 1997), and stellar evolution (Koester & Reimers 1996) information that cluster WDs can provide. An important byproduct of these studies has been an estimate of the WD mass contribution in open and globular clusters. The cluster WD mass fraction is of importance for understanding the dynamical state and history of star clusters. It also bears an important connection to the WD mass fractions of the Galactic disk and halo. Current evidence indicates that the open clusters (e.g. von Hippel et al. 1996; Reid this volume) have essentially the same luminosity function (LF) as the solar neighborhood population. The case for the halo is less clear, despite the number of very good globular cluster LFs down to nearly 0.1 solar masses (e.g. Cool et al. 1996; Piotto, this volume), as the field halo LF is poorly known. For most clusters dynamical evolution should cause evaporation of the lowest mass members, biasing clusters to have flatter present-day mass functions (PDMFs) than the disk and halo field populations. Dynamical evolution should also allow cluster WDs to escape, though not in the same numbers as the much lower mass main sequence stars. The detailed connection between cluster PDMFs and the field IMF awaits elucidation from observations and the new combined N-body and stellar evolution models (Tout, this volume). Nevertheless, the WD mass fraction of clusters already provides an estimate for the WD mass fraction of the disk and halo field populations. A literature search to collect cluster WDs and a simple interpretive model follow. This is a work in progress and the full details of the literature search and the model will be published elsewhere.


1998 ◽  
Vol 11 (1) ◽  
pp. 570-570
Author(s):  
Johan Holmberg ◽  
Lennart Lindegren ◽  
Chris Flynn

We use the Hipparcos survey to derive an improved model of the local galactic structure. The availability of parallaxes for all the stars permits direct determination of stellar distributions, eliminating the basic indeterminacy of classical methods based on star counts. Hipparcos gives for the first time a truly three-dimensional view of the solar vicinity, and a complete, homogeneous and highly accurate set of magnitudes and colours. This means that new techniques can be applied in the treatment of the data which place strong constraints on a model that tries to describe the local Galactic structure. Here we investigate how well a static model of low complexitycan describe the Hipparcos observations. The interpretation of the Hipparcos data is complicated by various observational errors and selection effects that are hard to treat correctly. We do not try to correct the data, but instead use a model and subject this model to the same observational errors and selection effects. A model catalogue is created that can be compared with the observed catalogue directly in the observational domain, thereby eliminating the effects from various biases. Many features in the HR diagram are for the first time seen in field stars thanks to Hipparcos, such as the slanted red giant clump, previously seen in rich old open clusters such as Berkeley 18. This and other features ofthe observed HR diagram are well reproduced by the model thanks to the rather detailed modelling of the joint Mv/B — V distribution. Actually, separate distributions were derived for the three different components, disk, thick disk and halo, using the kinematic characteristics of the components to discriminate between them.


1998 ◽  
Vol 11 (1) ◽  
pp. 565-565
Author(s):  
G. Cayrel de Strobel ◽  
R. Cayrel ◽  
Y. Lebreton

After having studied in great detail the observational HR diagram (log Teff, Mbol) composed by 40 main sequence stars of the Hyades (Perryman et al.,1997, A&A., in press), we have tried to apply the same method to the observational main sequences of the three next nearest open clusters: Coma Berenices, the Pleiades, and Praesepe. This method consists in comparing the observational main sequence of the clusters with a grid of theoretical ZAMSs. The stars composing the observational main sequences had to have reliable absolute bolometric magnitudes, coming all from individual Hipparcos parallaxes, precise bolometric corrections, effective temperatures and metal abundances from high resolution detailed spectroscopic analyses. If we assume, following the work by Fernandez et al. (1996, A&A,311,127), that the mixing-lenth parameter is solar, the position of a theoretical ZAMS, in the (log Teff, Mbol) plane, computed with given input physics, only depends on two free parameters: the He content Y by mass, and the metallicity Z by mass. If effective temperature and metallicity of the constituting stars of the 4 clusters are previously known by means of detailed analyses, one can deduce their helium abundances by means of an appropriate grid of theoretical ZAMS’s. The comparison between the empirical (log Teff, Mbol) main sequence of the Hyades and the computed ZAMS corresponding to the observed metallicity Z of the Hyades (Z= 0.0240 ± 0.0085) gives a He abundance for the Hyades, Y= 0.26 ± 0.02. Our interpretation, concerning the observational position of the main sequence of the three nearest clusters after the Hyades, is still under way and appears to be greatly more difficult than for the Hyades. For the moment we can say that: ‒ The 15 dwarfs analysed in detailed in Coma have a solar metallicity: [Fe/H] = -0.05 ± 0.06. However, their observational main sequence fit better with the Hyades ZAMS. ‒ The mean metallicity of 13 Pleiades dwarfs analysed in detail is solar. A metal deficient and He normal ZAMS would fit better. But, a warning for absorption in the Pleiades has to be recalled. ‒ The upper main sequence of Praesepe, (the more distant cluster: 180 pc) composed by 11 stars, analysed in detail, is the one which has the best fit with the Hyades ZAMS. The deduced ‘turnoff age’ of the cluster is slightly higher than that of the Hyades: 0.8 Gyr instead of 0.63 Gyr.


Sign in / Sign up

Export Citation Format

Share Document