scholarly journals Towards an Improved Model of the Galaxy

1998 ◽  
Vol 11 (1) ◽  
pp. 570-570
Author(s):  
Johan Holmberg ◽  
Lennart Lindegren ◽  
Chris Flynn

We use the Hipparcos survey to derive an improved model of the local galactic structure. The availability of parallaxes for all the stars permits direct determination of stellar distributions, eliminating the basic indeterminacy of classical methods based on star counts. Hipparcos gives for the first time a truly three-dimensional view of the solar vicinity, and a complete, homogeneous and highly accurate set of magnitudes and colours. This means that new techniques can be applied in the treatment of the data which place strong constraints on a model that tries to describe the local Galactic structure. Here we investigate how well a static model of low complexitycan describe the Hipparcos observations. The interpretation of the Hipparcos data is complicated by various observational errors and selection effects that are hard to treat correctly. We do not try to correct the data, but instead use a model and subject this model to the same observational errors and selection effects. A model catalogue is created that can be compared with the observed catalogue directly in the observational domain, thereby eliminating the effects from various biases. Many features in the HR diagram are for the first time seen in field stars thanks to Hipparcos, such as the slanted red giant clump, previously seen in rich old open clusters such as Berkeley 18. This and other features ofthe observed HR diagram are well reproduced by the model thanks to the rather detailed modelling of the joint Mv/B — V distribution. Actually, separate distributions were derived for the three different components, disk, thick disk and halo, using the kinematic characteristics of the components to discriminate between them.

1984 ◽  
Vol 105 ◽  
pp. 97-100
Author(s):  
G. Barbaro ◽  
L. Pigatto

In order to verify the agreement with the theory of the observed HR diagram as a whole, 38 open clusters with (B-V)o, t≥0.10 at the turnoff, have been analyzed with particular regard to the RGB luminosity function.


2019 ◽  
Vol 488 (4) ◽  
pp. 5615-5632 ◽  
Author(s):  
Sagiv Shiber ◽  
Roberto Iaconi ◽  
Orsola De Marco ◽  
Noam Soker

Abstract We conduct three-dimensional hydrodynamic simulations of the common envelope binary interaction and show that if the companion were to launch jets while interacting with the giant primary star’s envelope, the jets would remove a substantial fraction of the envelope’s gas. We use the set-up and numerical code of an earlier common envelope study that did not include jets, with a 0.88-M⊙, 83-R⊙ red giant star and a 0.3-M⊙ companion. The assumption is that the companion star accretes mass via an accretion disc that is responsible for launching the jets which, in the simulations, are injected numerically. For the first time we conduct simulations that include jets as well as the gravitational energy released by the inspiralling core-companion system. We find that simulations with jets unbind approximately three times as much envelope mass than identical simulations that do not include jets, though the total fraction of unbound gas remains below 50 per cent for these particular simulations. The jets generate high-velocity outflows in the polar directions. The jets also increase the final core-companion orbital separation and lead to a kick velocity of the core-companion binary system. Our results show that, if able to form, jets could play a crucial role in ejecting the envelope and in shaping the outflow.


1998 ◽  
Vol 179 ◽  
pp. 231-233
Author(s):  
S. Ruphy

Thanks to the DENIS program (Deep Near-Infrared Survey of the Southern Sky), relatively deep near-infrared star counts are now available for the first time on a large scale. The basic method to interpret star counts in terms of galactic structure is to compare them with predictions given by models of the point source sky. Of particular promise are studies with DENIS of the spatial distribution of evolved stars in our Galaxy, thanks to its high sensitivity to red giant and to the much lower interstellar extinction that hampers visual observations of far-away stars in the disc of our Galaxy. In this paper, I present a sample of extensive comparisons between two models of the Galaxy and DENIS star counts (Ruphy 1996). I will focus on the analysis of star counts in the anticenter direction, that leads to new values for the distance of the cutoff and the radial scale length of the stellar disc.


2020 ◽  
Vol 496 (2) ◽  
pp. 2021-2038
Author(s):  
F A Ferreira ◽  
W J B Corradi ◽  
F F S Maia ◽  
M S Angelo ◽  
J F C Santos

ABSTRACT We report the discovery of 25 new open clusters resulting from a search in dense low Galactic latitude fields. We also provide, for the first time, structural and astrophysical parameters for the new findings and 34 other recently discovered open clusters using Gaia Data Release 2 (DR2) data. The candidates were confirmed by jointly inspecting the vector point diagrams and spatial distribution. The discoveries were validated by matching near known objects and comparing their mean astrometric parameters with the available literature. A decontamination algorithm was applied to the three-dimensional astrometric space to derive membership likelihoods for clusters stars. By rejecting stars with low membership likelihoods, we built decontaminated colour–magnitude diagrams and derived the clusters astrophysical parameters by isochrone fitting. The structural parameters were also derived by King-profile fittings over the stellar distributions. The investigated clusters are mainly located within 3 kpc from the Sun, with ages ranging from 30 Myr to 3.2 Gyr and reddening limited to E(B − V) = 2.5. On average, our cluster sample presents less concentrated structures than Gaia DR2 confirmed clusters, since the derived core radii are larger while the tidal radii are not significantly different. Most of them are located in the IV quadrant of the Galactic disc at low latitudes, therefore, they are immersed in dense fields characteristic of the inner Milky Way.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Wei Luo ◽  
Yuma Nakamura ◽  
Jinseon Park ◽  
Mina Yoon

AbstractRecent experiments identified Co3Sn2S2 as the first magnetic Weyl semimetal (MWSM). Using first-principles calculation with a global optimization approach, we explore the structural stabilities and topological electronic properties of cobalt (Co)-based shandite and alloys, Co3MM’X2 (M/M’ = Ge, Sn, Pb, X = S, Se, Te), and identify stable structures with different Weyl phases. Using a tight-binding model, for the first time, we reveal that the physical origin of the nodal lines of a Co-based shandite structure is the interlayer coupling between Co atoms in different Kagome layers, while the number of Weyl points and their types are mainly governed by the interaction between Co and the metal atoms, Sn, Ge, and Pb. The Co3SnPbS2 alloy exhibits two distinguished topological phases, depending on the relative positions of the Sn and Pb atoms: a three-dimensional quantum anomalous Hall metal, and a MWSM phase with anomalous Hall conductivity (~1290 Ω−1 cm−1) that is larger than that of Co2Sn2S2. Our work reveals the physical mechanism of the origination of Weyl fermions in Co-based shandite structures and proposes topological quantum states with high thermal stability.


2020 ◽  
Vol 501 (1) ◽  
pp. L71-L75
Author(s):  
Cornelius Rampf ◽  
Oliver Hahn

ABSTRACT Perturbation theory is an indispensable tool for studying the cosmic large-scale structure, and establishing its limits is therefore of utmost importance. One crucial limitation of perturbation theory is shell-crossing, which is the instance when cold-dark-matter trajectories intersect for the first time. We investigate Lagrangian perturbation theory (LPT) at very high orders in the vicinity of the first shell-crossing for random initial data in a realistic three-dimensional Universe. For this, we have numerically implemented the all-order recursion relations for the matter trajectories, from which the convergence of the LPT series at shell-crossing is established. Convergence studies performed at large orders reveal the nature of the convergence-limiting singularities. These singularities are not the well-known density singularities at shell-crossing but occur at later times when LPT already ceased to provide physically meaningful results.


2021 ◽  
Vol 11 (4) ◽  
pp. 1670
Author(s):  
Tetsuya Mimura ◽  
Shinpei Okawa ◽  
Hiroshi Kawaguchi ◽  
Yukari Tanikawa ◽  
Yoko Hoshi

Thyroid cancer is usually diagnosed by ultrasound imaging and fine-needle aspiration biopsy. However, diagnosis of follicular thyroid carcinomas (FTC) is difficult because FTC lacks nuclear atypia and a consensus on histological interpretation. Diffuse optical tomography (DOT) offers the potential to diagnose FTC because it can measure tumor hypoxia, while image reconstruction of the thyroid is still challenging mainly due to the complex anatomical features of the neck. In this study, we attempted to solve this issue by creating a finite element model of the human neck excluding the trachea (a void region). By reconstruction of the absorption coefficients at three wavelengths, 3D tissue oxygen saturation maps of the human thyroid are obtained for the first time by DOT.


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
P. Kim ◽  
R. Jorge ◽  
W. Dorland

A simplified analytical form of the on-axis magnetic well and Mercier's criterion for interchange instabilities for arbitrary three-dimensional magnetic field geometries is derived. For this purpose, a near-axis expansion based on a direct coordinate approach is used by expressing the toroidal magnetic flux in terms of powers of the radial distance to the magnetic axis. For the first time, the magnetic well and Mercier's criterion are then written as a one-dimensional integral with respect to the axis arclength. When compared with the original work of Mercier, the derivation here is presented using modern notation and in a more streamlined manner that highlights essential steps. Finally, these expressions are verified numerically using several quasisymmetric and non-quasisymmetric stellarator configurations including Wendelstein 7-X.


2020 ◽  
Vol 30 (02) ◽  
pp. 2050026 ◽  
Author(s):  
Zahra Faghani ◽  
Fahimeh Nazarimehr ◽  
Sajad Jafari ◽  
Julien C. Sprott

In this paper, some new three-dimensional chaotic systems are proposed. The special property of these autonomous systems is their identical eigenvalues. The systems are designed based on the general form of quadratic jerk systems with 10 terms, and some systems with stable equilibria. Using a systematic computer search, 12 simple chaotic systems with identical eigenvalues were found. We believe that systems with identical eigenvalues are described here for the first time. These simple systems are listed in this paper, and their dynamical properties are investigated.


2016 ◽  
Vol 11 (S321) ◽  
pp. 22-24
Author(s):  
Sakurako Okamoto ◽  
Nobuo Arimoto ◽  
Annette M.N. Ferguson ◽  
Edouard J. Bernard ◽  
Mike J. Irwin ◽  
...  

AbstractWe present the results from the state-of-the-art wide-field survey of the M81 galaxy group that we are conducting with Hyper Suprime-Cam on Subaru Telescope. Our photometry reaches about 2 mag below the tip of the red giant branch (RGB) and reveals the spatial distribution of both old and young stars over an area of 5°2around the M81. The young main-sequence (MS) stars closely follow the HI distribution and can be found in a stellar stream between M81 and NGC 3077 and in numerous outlying stellar associations. Our survey also reveals for the first time the very extended (>2 × R25) halos of RGB stars around M81, M82, and NGC 3077, as well as faint tidal streams that link these systems. The gravitational interactions between M81, M82 and NGC 3077 galaxies induced star formation in tidally stripped gas, and also significantly perturbed the older stellar components leading to disturbed halo morphologies.


Sign in / Sign up

Export Citation Format

Share Document