scholarly journals Discovery of Two Nearby Post-T Tauri Stellar Associations

2020 ◽  
Vol 159 (3) ◽  
pp. 105 ◽  
Author(s):  
Jiaming Liu ◽  
Min Fang ◽  
Chao Liu
Keyword(s):  
T Tauri ◽  
1958 ◽  
Vol 8 ◽  
pp. 944-948
Author(s):  
V. A. Ambartsumian

Almost ten years have passed since the idea of stellar associations as nonstable stellar systems was formulated. The complex of observational data obtained during this time indicates that stars contained in the associations are young objects of some million years of age. We would like to stress here that this concerns both the O and T associations. It is also known that those O associations which could be sufficiently investigated in this respect, contain, as a rule, T Tauri type stars and are consequently T associations as well. There are, on the other hand, T associations which do not contain hot giants. But apparently the mechanisms of stellar formations must be similar in O and T associations. This means that any theory of stellar origin for a given type of association must permit variations, which will provide an explanation of the origin of stars in associations of other type.Two hypotheses on the origin of stellar associations have been thus far discussed. One of them, suggested by the author at the initial stage of the idea about associations, supposes that each association has originated as a result of an expansion from a body or a system, the volume of which was initially very small. The dimensions of the latter was in any case less than one parsec. According to this point of view, these initial bodies (protostars) have either not been observed up to the present, or have not yet been identified with any known object. This point of view does not give any indication about a concrete mechanism of stellar origin, postponing its explanation to the time, when the earliest stages of the expansion of the association may be studied in detail.


1997 ◽  
Vol 161 ◽  
pp. 267-282 ◽  
Author(s):  
Thierry Montmerle

AbstractFor life to develop, planets are a necessary condition. Likewise, for planets to form, stars must be surrounded by circumstellar disks, at least some time during their pre-main sequence evolution. Much progress has been made recently in the study of young solar-like stars. In the optical domain, these stars are known as «T Tauri stars». A significant number show IR excess, and other phenomena indirectly suggesting the presence of circumstellar disks. The current wisdom is that there is an evolutionary sequence from protostars to T Tauri stars. This sequence is characterized by the initial presence of disks, with lifetimes ~ 1-10 Myr after the intial collapse of a dense envelope having given birth to a star. While they are present, about 30% of the disks have masses larger than the minimum solar nebula. Their disappearance may correspond to the growth of dust grains, followed by planetesimal and planet formation, but this is not yet demonstrated.


2019 ◽  
Vol 63 (12) ◽  
pp. 1045-1055
Author(s):  
A. Yu. Sytov ◽  
A. M. Fateeva
Keyword(s):  

1998 ◽  
Vol 116 (1) ◽  
pp. 455-468 ◽  
Author(s):  
James Muzerolle ◽  
Lee Hartmann ◽  
Nuria Calvet

1998 ◽  
Vol 497 (1) ◽  
pp. 342-353 ◽  
Author(s):  
Andisheh Mahdavi ◽  
Scott J. Kenyon
Keyword(s):  

1997 ◽  
Vol 182 ◽  
pp. 391-405 ◽  
Author(s):  
Lee Hartmann

Outflows from low-mass young stellar objects are thought to draw upon the energy released by accretion onto T Tauri stars. I briefly summarize the evidence for this accretion and outline present estimates of mass accretion rates. Young stars show a very large range of accretion rates, and this has important implications for both mass ejection and for the structure of stellar magnetospheres which may truncate T Tauri disks.


1998 ◽  
Vol 11 (1) ◽  
pp. 423-424
Author(s):  
Motohide Tamura ◽  
Yoichi Itoh ◽  
Yumiko Oasa ◽  
Alan Tokunaga ◽  
Koji Sugitani

Abstract In order to tackle the problems of low-mass end of the initial mass function (IMF) in star-forming regions and the formation mechanisms of brown dwarfs, we have conducted deep infrared surveys of nearby molecular clouds. We have found a significant population of very low-luminosity sources with IR excesses in the Taurus cloud and the Chamaeleon cloud core regions whose extinction corrected J magnitudes are 3 to 8 mag fainter than those of typical T Tauri stars in the same cloud. Some of them are associated with even fainter companions. Follow-up IR spectroscopy has confirmed for the selected sources that their photospheric temperature is around 2000 to 3000 K. Thus, these very low-luminosity young stellar sources are most likely very low-mass T Tauri stars, and some of them might even be young brown dwarfs.


2020 ◽  
Vol 499 (4) ◽  
pp. 5623-5640
Author(s):  
Alice C Quillen ◽  
Alex R Pettitt ◽  
Sukanya Chakrabarti ◽  
Yifan Zhang ◽  
Jonathan Gagné ◽  
...  

ABSTRACT With backwards orbit integration, we estimate birth locations of young stellar associations and moving groups identified in the solar neighbourhood that are younger than 70 Myr. The birth locations of most of these stellar associations are at a smaller galactocentric radius than the Sun, implying that their stars moved radially outwards after birth. Exceptions to this rule are the Argus and Octans associations, which formed outside the Sun’s galactocentric radius. Variations in birth heights of the stellar associations suggest that they were born in a filamentary and corrugated disc of molecular clouds, similar to that inferred from the current filamentary molecular cloud distribution and dust extinction maps. Multiple spiral arm features with different but near corotation pattern speeds and at different heights could account for the stellar association birth sites. We find that the young stellar associations are located in between peaks in the radial/tangential (UV) stellar velocity distribution for stars in the solar neighbourhood. This would be expected if they were born in a spiral arm, which perturbs stellar orbits that cross it. In contrast, stellar associations seem to be located near peaks in the vertical phase-space distribution, suggesting that the gas in which stellar associations are born moves vertically together with the low-velocity dispersion disc stars.


2018 ◽  
Vol 859 (2) ◽  
pp. L28 ◽  
Author(s):  
Mihoko Konishi ◽  
Jun Hashimoto ◽  
Yasunori Hori
Keyword(s):  
T Tauri ◽  

Sign in / Sign up

Export Citation Format

Share Document