scholarly journals TOI-1431b/MASCARA-5b: A Highly Irradiated Ultrahot Jupiter Orbiting One of the Hottest and Brightest Known Exoplanet Host Stars

2021 ◽  
Vol 162 (6) ◽  
pp. 292
Author(s):  
Brett C. Addison ◽  
Emil Knudstrup ◽  
Ian Wong ◽  
Guillaume Hébrard ◽  
Patrick Dorval ◽  
...  

Abstract We present the discovery of a highly irradiated and moderately inflated ultrahot Jupiter, TOI-1431b/MASCARA-5 b (HD 201033b), first detected by NASA’s Transiting Exoplanet Survey Satellite mission (TESS) and the Multi-site All-Sky Camera (MASCARA). The signal was established to be of planetary origin through radial velocity measurements obtained using SONG, SOPHIE, FIES, NRES, and EXPRES, which show a reflex motion of K = 294.1 ± 1.1 m s−1. A joint analysis of the TESS and ground-based photometry and radial velocity measurements reveals that TOI-1431b has a mass of M p = 3.12 ± 0.18 M J (990 ± 60 M ⊕), an inflated radius of R p = 1.49 ± 0.05 R J (16.7 ± 0.6 R ⊕), and an orbital period of P = 2.650237 ± 0.000003 days. Analysis of the spectral energy distribution of the host star reveals that the planet orbits a bright (V = 8.049 mag) and young ( 0.29 − 0.19 + 0.32 Gyr) Am type star with T eff = 7690 − 250 + 400 K, resulting in a highly irradiated planet with an incident flux of 〈 F 〉 = 7.24 − 0.64 + 0.68 × 109 erg s−1 cm−2 ( 5300 − 470 + 500 S ⊕ ) and an equilibrium temperature of T eq = 2370 ± 70 K. TESS photometry also reveals a secondary eclipse with a depth of 127 − 5 + 4 ppm as well as the full phase curve of the planet’s thermal emission in the red-optical. This has allowed us to measure the dayside and nightside temperature of its atmosphere as T day = 3004 ± 64 K and T night = 2583 ± 63 K, the second hottest measured nightside temperature. The planet’s low day/night temperature contrast (∼420 K) suggests very efficient heat transport between the dayside and nightside hemispheres. Given the host star brightness and estimated secondary eclipse depth of ∼1000 ppm in the K band, the secondary eclipse is potentially detectable at near-IR wavelengths with ground-based facilities, and the planet is ideal for intensive atmospheric characterization through transmission and emission spectroscopy from space missions such as the James Webb Space Telescope and the Atmospheric Remote-sensing Infrared Exoplanet Large-survey.

2018 ◽  
Vol 617 ◽  
pp. A76 ◽  
Author(s):  
G. Chauvin ◽  
R. Gratton ◽  
M. Bonnefoy ◽  
A.-M. Lagrange ◽  
J. de Boer ◽  
...  

Context. HD 95086 (A8V, 17 Myr) hosts a rare planetary system for which a multi-belt debris disk and a giant planet of 4–5 MJup have been directly imaged. Aims. Our study aims to characterize the global architecture of this young system using the combination of radial velocity and direct imaging observations. We want to characterize the physical and orbital properties of HD 95086 b, search for additional planets at short and wide orbits and image the cold outer debris belt in scattered light. Methods. We used HARPS at the ESO 3.6 m telescope to monitor the radial velocity of HD 95086 over two years and investigate the existence of giant planets at less than 3 au orbital distance. With the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE at VLT, we imaged the faint circumstellar environment beyond 10 au at six epochs between 2015 and 2017. Results. We do not detect additional giant planets around HD 95086. We identify the nature (bound companion or background contaminant) of all point-like sources detected in the IRDIS field of view. None of them correspond to the ones recently discovered near the edge of the cold outer belt by ALMA. HD 95086 b is resolved for the first time in J-band with IFS. Its near-infrared spectral energy distribution is well fitted by a few dusty and/or young L7–L9 dwarf spectral templates. The extremely red 1–4 μm spectral distribution is typical of low-gravity objects at the L/T spectral type transition. The planet’s orbital motion is resolved between January 2015 and May 2017. Together with past NaCo measurements properly re-calibrated, our orbital fitting solutions favor a retrograde low to moderate-eccentricity orbit e = 0.2+0.3−0.2, with a semi-major axis ~52 au corresponding to orbital periods of ~288 yr and an inclination that peaks at i = 141°, which is compatible with a planet-disk coplanar configuration. Finally, we report the detection in polarimetric differential imaging of the cold outer debris belt between 100 and 300 au, consistent in radial extent with recent ALMA 1.3 mm resolved observations.


2019 ◽  
Vol 490 (2) ◽  
pp. 1489-1497 ◽  
Author(s):  
Massimo Persic ◽  
Yoel Rephaeli

ABSTRACT Radio and γ-ray measurements of large lobes of several radio galaxies provide adequate basis for determining whether emission in these widely separated spectral regions is largely by energetic electrons. This is very much of interest as there is of yet no unequivocal evidence for a significant energetic proton component to account for γ-ray emission by neutral pion decay. A quantitative assessment of the pion yield spectral distribution necessitates full accounting of the local and background radiation fields in the lobes; indeed, doing so in our recent analysis of the spectral energy distribution of the Fornax A lobes considerably weakened previous conclusions on the hadronic origin of the emission measured by the Fermi satellite. We present the results of similar analyses of the measured radio, X-ray, and γ-ray emission from the lobes of Centaurus A, Centaurus B, and NGC 6251. The results indicate that the measured γ-ray emission from these lobes can be accounted for by Compton scattering of the radio-emitting electrons off the superposed radiation fields in the lobes; consequently, we set upper bounds on the energetic proton contents of the lobes.


2019 ◽  
Vol 487 (4) ◽  
pp. 5781-5787
Author(s):  
Ji-Yang Ren ◽  
Quan-Gui Gao ◽  
Huai-Zhen Li ◽  
Ju Ma ◽  
Shan-Shan Zhao ◽  
...  

ABSTRACT The multiband photon emission and spectral evolution of G54.1+0.3 are investigated in the framework of leptonic and leptonic–hadronic models. We model the spectral energy distribution (SED) of the pulsar wind nebula (PWN) and find that both the leptonic and leptonic–hadronic models can well reproduce the multiband observations of the nebula with appropriate model parameters. Combining with dynamical evolution of the PWN, we investigate the time evolution of photon SED and radiative luminosity in the X-ray and TeV γ-ray bands of G54.1+0.3. The results indicate that the synchrotron spectrum and radiative luminosity in the X-ray band of the PWN calculated with these two models have obvious differences as the age increases to about 4 kyr, and the largest difference is present at about 40 kyr. The γ-ray luminosity calculated by the leptonic–hadronic model shows that the contribution of TeV photons arising from the decay of neutral pions produced in proton–proton interaction also changes with time and is always important for modifying the TeV γ-ray spectrum of G54.1+0.3 during the evolution of the PWN.


2014 ◽  
Vol 567 ◽  
pp. A8 ◽  
Author(s):  
G. Chen ◽  
R. van Boekel ◽  
H. Wang ◽  
N. Nikolov ◽  
U. Seemann ◽  
...  

2020 ◽  
Vol 494 (1) ◽  
pp. 62-68 ◽  
Author(s):  
Jinhee Lee ◽  
Inseok Song ◽  
Simon Murphy

ABSTRACT We report the discovery of the oldest (∼55 Myr) mid-M type star known to host ongoing accretion. 2MASS J15460752–6258042 (2M1546, spectral type M5, 59.2 pc) shows spectroscopic signs of accretion such as strong H α, He i, and [O i] emission lines, from which we estimate an accretion rate of ∼10−10 M⊙ yr−1. Considering the clearly detected infrared excess in all WISE bands, the shape of its spectral energy distribution (SED) and its age, we believe that the star is surrounded by a transitional disc, clearly with some gas still present at inner radii. The position and kinematics of the star from Gaia DR2 and our own radial-velocity measurements suggest membership in the nearby ∼55 Myr-old Argus moving group. At only 59 pc from Earth, 2M1546 is one of the nearest accreting mid-M dwarfs, making it an ideal target for studying the upper limit on the lifetimes of gas-rich discs around low-mass stars.


2010 ◽  
Vol 27 (4) ◽  
pp. 431-438 ◽  
Author(s):  
H. Steinle

AbstractCen A, at a distance of less than 4 Mpc, is the nearest radio-loud AGN. Its emission is detected from radio to very-high energy gamma-rays. Despite the fact that Cen A is one of the best studied extragalactic objects the origin of its hard X-ray and soft gamma-ray emission (100 keV <E< 50 MeV) is still uncertain. Observations with high spatial resolution in the adjacent soft X-ray and hard gamma-ray regimes suggest that several distinct components such as a Seyfert-like nucleus, relativistic jets, and even luminous X-ray binaries within Cen A may contribute to the total emission in the MeV regime that has been detected with low spatial resolution. As the Spectral Energy Distribution of Cen A has its second maximum around 1 MeV, this energy range plays an important role in modeling the emission of (this) AGN. As there will be no satellite mission in the near future that will cover this energies with higher spatial resolution and better sensitivity, an overview of all existing hard X-ray and soft gamma-ray measurements of Cen A is presented here defining the present knowledge on Cen A in the MeV energy range.


2019 ◽  
Vol 488 (4) ◽  
pp. 4596-4606 ◽  
Author(s):  
J V Hernández Santisteban ◽  
V Cúneo ◽  
N Degenaar ◽  
J van den Eijnden ◽  
D Altamirano ◽  
...  

ABSTRACT IGR J17062–6143 is an ultracompact X-ray binary (UCXB) with an orbital period of 37.96 min. It harbours a millisecond X-ray pulsar that is spinning at 163 Hz and and has continuously been accreting from its companion star since 2006. Determining the composition of the accreted matter in UCXBs is of high interest for studies of binary evolution and thermonuclear burning on the surface of neutron stars. Here, we present a multiwavelength study of IGR J17062–6143 aimed to determine the detailed properties of its accretion disc and companion star. The multi-epoch photometric UV to near-infrared spectral energy distribution (SED) is consistent with an accretion disc Fν ∝ ν1/3. The SED modelling of the accretion disc allowed us to estimate an outer disc radius of $R_{\rm out} = 2.2^{+0.9}_{-0.4} \times 10^{10}$ cm and a mass-transfer rate of $\dot{m} = 1.8^{+1.8}_{-0.5}\times 10^{-10}$ M⊙ yr−1. Comparing this with the estimated mass-accretion rate inferred from its X-ray emission suggests that ≳90 per cent of the transferred mass is lost from the system. Moreover, our SED modelling shows that the thermal emission component seen in the X-ray spectrum is highly unlikely from the accretion disc and must therefore represent emission from the surface of the neutron star. Our low-resolution optical spectrum revealed a blue continuum and no emission lines, i.e. lacking H and He features. Based on the current data we cannot conclusively identify the nature of the companion star, but we make recommendations for future study that can distinguish between the different possible evolution histories of this X-ray binary. Finally, we demonstrate how multiwavelength observations can be effectively used to find more UCXBs among the LMXBs.


Author(s):  
P. Benaglia ◽  
M. De Becker ◽  
C. H. Ishwara-Chandra ◽  
H. T. Intema ◽  
N. L. Isequilla

Abstract Massive, early-type stars have been detected as radio sources for many decades. Their thermal winds radiate free–free continuum and in binary systems hosting a colliding-wind region, non-thermal emission has also been detected. To date, the most abundant data have been collected from frequencies higher than 1 GHz. We present here the results obtained from observations at 325 and 610 MHz, carried out with the Giant Metrewave Radio Telescope, of all known Wolf-Rayet and O-type stars encompassed in area of $\sim$ 15 sq degrees centred on the Cygnus region. We report on the detection of 11 massive stars, including both Wolf-Rayet and O-type systems. The measured flux densities at decimeter wavelengths allowed us to study the radio spectrum of the binary systems and to propose a consistent interpretation in terms of physical processes affecting the wide-band radio emission from these objects. WR 140 was detected at 610 MHz, but not at 325 MHz, very likely because of the strong impact of free–free absorption (FFA). We also report—for the first time—on the detection of a colliding-wind binary system down to 150 MHz, pertaining to the system of WR 146, making use of complementary information extracted from the Tata Institute of Fundamental Research GMRT Sky Survey. Its spectral energy distribution clearly shows the turnover at a frequency of about 600 MHz, that we interpret to be due to FFA. Finally, we report on the identification of two additional particle-accelerating colliding-wind binaries, namely Cyg OB2 12 and ALS 15108 AB.


2020 ◽  
Vol 497 (2) ◽  
pp. 2352-2370 ◽  
Author(s):  
G A Matzeu ◽  
E Nardini ◽  
M L Parker ◽  
J N Reeves ◽  
V Braito ◽  
...  

ABSTRACT We present joint XMM–Newton and NuSTAR observations of the ‘bare’ narrow-line Seyfert 1 Ton S180 (z = 0.062), carried out in 2016 and providing the first hard X-ray view of this luminous galaxy. We find that the 0.4–30 keV band cannot be self-consistently reproduced by relativistic reflection models, which fail to account simultaneously for the soft and hard X-ray emission. The smooth soft excess prefers extreme blurring parameters, confirmed by the nearly featureless nature of the Reflection Grating Spectrometer (RGS) spectrum, while the moderately broad Fe K line and the modest hard excess above 10 keV appear to arise in a milder gravity regime. By allowing a different origin of the soft excess, the broad-band X-ray spectrum and overall spectral energy distribution (SED) are well explained by a combination of (a) direct thermal emission from the accretion disc, dominating from the optical to the far/extreme UV; (b) Comptonization of seed disc photons by a warm (kTe ∼ 0.3 keV) and optically thick (τ ∼ 10) corona, mostly contributing to the soft X-rays; (c) Comptonization by a standard hot ($kT_{\rm \mathrm{ e}}\gtrsim 100$ keV) and optically thin (τ &lt; 0.5) corona, responsible for the primary X-ray continuum; and (d) reflection from the mid/outer part of the disc. The two coronae are suggested to be rather compact, with $R_{\rm hot}\lesssim R_{\rm warm}\lesssim 10\, r_{\rm g}$. Our SED analysis implies that Ton S180 accretes at super-Eddington rates. This is a key condition for the launch of a wind, marginal (i.e. 3.1σ significance) evidence of which is indeed found in the RGS spectrum.


2019 ◽  
Vol 488 (3) ◽  
pp. 3507-3525 ◽  
Author(s):  
Nicole Pawellek ◽  
Attila Moór ◽  
Julien Milli ◽  
Ágnes Kóspál ◽  
Johan Olofsson ◽  
...  

Abstract In a multiwavelength study of thermal emission and scattered light images we analyse the dust properties and structure of the debris disc around the A1-type main-sequence star 49 Cet. As a basis for this study, we present new scattered light images of the debris disc known to possess a high amount of both dust and gas. The outer region of the disc is revealed in former coronagraphic H-band and our new Y-band images from the Very Large Telescope SPHERE instrument. We use the knowledge of the disc’s radial extent inferred from ALMA observations and the grain size distribution found by spectral energy distribution fitting to generate semidynamical dust models of the disc. We compare the models to scattered light and thermal emission data and find that a disc with a maximum surface density at 110 au and shallow edges can describe both the thermal emission and the scattered light observations. This suggests that grains close to the blow-out limit and large grains stem from the same planetesimal population and are mainly influenced by radiation pressure. The influence of inward transport processes could not be analysed in this study.


Sign in / Sign up

Export Citation Format

Share Document