scholarly journals No Sub-Saturn-mass Planet Desert in the CORALIE/HARPS Radial-velocity Sample

2021 ◽  
Vol 162 (6) ◽  
pp. 243
Author(s):  
David P. Bennett ◽  
Clément Ranc ◽  
Rachel B. Fernandes

Abstract We analyze the CORALIE/HARPS sample of exoplanets found by the Doppler radial-velocity method for signs of the predicted gap or “desert” at 10–100 M ⊕ caused by runaway gas accretion at semimajor axes of <3 au. We find that these data are not consistent with this prediction. This result is similar to the finding by the MOA gravitational microlensing survey that found no desert in the exoplanet distribution for exoplanets in slightly longer period orbits and somewhat lower host masses (Suzuki et al. 2018). Together, these results imply that the runaway gas accretion scenario of the core accretion theory does not have a large influence on the final mass and semimajor axis distribution of exoplanets.

2006 ◽  
Vol 643 (1) ◽  
pp. 484-500 ◽  
Author(s):  
Sarah E. Robinson ◽  
Gregory Laughlin ◽  
Peter Bodenheimer ◽  
Debra Fischer

Author(s):  
F. M. Rica ◽  
R. Barrena ◽  
J. A. Henríquez ◽  
F. M. Pérez ◽  
P. Vargas

AbstractHD 106515 AB (STF1619 AB) is a high common proper motion and common radial velocity binary star system composed of two G-type bright stars located at 35 pc and separated by about 7 arcsec. This system was observed by theHipparcossatellite with a precision in distance and proper motion of 3 and 2%, respectively. The system includes a circumprimary planet of nearly 10 Jupiter masses and a semimajor axis of 4.59 AU, discovered using the radial velocity method. The observational arc of 21° shows a small curvature that evidences HD 106515 AB is a gravitationally bound system. This work determines the dynamical parameters for this system which reinforce the bound status of both stellar components. We determine orbital solutions from instantaneous position and velocity vectors. In addition, we provide a very preliminary orbital solution and a distribution of the orbital parameters, obtained from the line of sight (z). Our results show that HD 106515 AB presents an orbital period of about 4 800 years, a semimajor axis of 345 AU and an eccentricity of about 0.42. Finally, we use an N-body numerical code to perform simulations and reproduce the longer term octupole perturbations on the inner orbit.


2019 ◽  
Vol 490 (1) ◽  
pp. 502-512 ◽  
Author(s):  
A L Wallace ◽  
M J Ireland

ABSTRACT Giant planets are expected to form at orbital radii that are relatively large compared to transit and radial velocity detections (>1 au). As a result, giant planet formation is best observed through direct imaging. By simulating the formation of giant (0.3–5MJ) planets by core accretion, we predict planet magnitude in the near-infrared (2–4 μm) and demonstrate that, once a planet reaches the runaway accretion phase, it is self-luminous and is bright enough to be detected in near-infrared wavelengths. Using planet distribution models consistent with existing radial velocity and imaging constraints, we simulate a large sample of systems with the same stellar and disc properties to determine how many planets can be detected. We find that current large (8–10 m) telescopes have at most a 0.2 per cent chance of detecting a core-accretion giant planet in the L’ band and 2 per cent in the K band for a typical solar-type star. Future instruments such as METIS and VIKiNG have higher sensitivity and are expected to detect exoplanets at a maximum rate of 2 and 8 per cent, respectively.


2012 ◽  
Vol 547 ◽  
pp. A105 ◽  
Author(s):  
P. Mollière ◽  
C. Mordasini
Keyword(s):  
The Core ◽  

2020 ◽  
Vol 494 (1) ◽  
pp. 108-119 ◽  
Author(s):  
Rebecca K Webb ◽  
Matteo Brogi ◽  
Siddharth Gandhi ◽  
Michael R Line ◽  
Jayne L Birkby ◽  
...  

ABSTRACT High-resolution spectroscopy ($R\, \geqslant \, 20\, 000$) is currently the only known method to constrain the orbital solution and atmospheric properties of non-transiting hot Jupiters. It does so by resolving the spectral features of the planet into a forest of spectral lines and directly observing its Doppler shift while orbiting the host star. In this study, we analyse VLT/CRIRES ($R=100\, 000$) L-band observations of the non-transiting giant planet HD 179949 b centred around 3.5 ${\mu {m}}$. We observe a weak (3.0σ, or S/N = 4.8) spectral signature of H2O in absorption contained within the radial velocity of the planet at superior-conjunction, with a mild dependence on the choice of line list used for the modelling. Combining this data with previous observations in the K band, we measure a detection significance of 8.4 σ for an atmosphere that is most consistent with a shallow lapse-rate, solar C/O ratio, and with CO and H2O being the only major sources of opacity in this wavelength range. As the two sets of data were taken 3 yr apart, this points to the absence of strong radial-velocity anomalies due, e.g. to variability in atmospheric circulation. We measure a projected orbital velocity for the planet of KP = (145.2 ± 2.0) km s−1 (1σ) and improve the error bars on this parameter by ∼70 per cent. However, we only marginally tighten constraints on orbital inclination ($66.2^{+3.7}_{-3.1}$ deg) and planet mass ($0.963^{+0.036}_{-0.031}$ Jupiter masses), due to the dominant uncertainties of stellar mass and semimajor axis. Follow ups of radial-velocity planets are thus crucial to fully enable their accurate characterization via high-resolution spectroscopy.


2019 ◽  
Vol 627 ◽  
pp. L9 ◽  
Author(s):  
A. Grandjean ◽  
A.-M. Lagrange ◽  
H. Beust ◽  
L. Rodet ◽  
J. Milli ◽  
...  

Context. High contrast imaging enables the determination of orbital parameters for substellar companions (planets, brown dwarfs) from the observed relative astrometry and the estimation of model and age-dependent masses from their observed magnitudes or spectra. Combining astrometric positions with radial velocity gives direct constraints on the orbit and on the dynamical masses of companions. A brown dwarf was discovered with the VLT/SPHERE instrument at the Very Large Telescope (VLT) in 2017, which orbits at ∼11 au around HD 206893. Its mass was estimated between 12 and 50 MJ from evolutionary models and its photometry. However, given the significant uncertainty on the age of the system and the peculiar spectrophotometric properties of the companion, this mass is not well constrained. Aims. We aim at constraining the orbit and dynamical mass of HD 206893 B. Methods. We combined radial velocity data obtained with HARPS spectra and astrometric data obtained with the high contrast imaging VLT/SPHERE and VLT/NaCo instruments, with a time baseline less than three years. We then combined those data with astrometry data obtained by HIPPARCOS and Gaia with a time baseline of 24 yr. We used a Markov chain Monte Carlo approach to estimate the orbital parameters and dynamical mass of the brown dwarf from those data. Results. We infer a period between 21 and 33 yr and an inclination in the range 20−41° from pole-on from HD 206893 B relative astrometry. The RV data show a significant RV drift over 1.6 yr. We show that HD 206893 B cannot be the source of this observed RV drift as it would lead to a dynamical mass inconsistent with its photometry and spectra and with HIPPARCOS and Gaia data. An additional inner (semimajor axis in the range 1.4–2.6 au) and massive (∼15 MJ) companion is needed to explain the RV drift, which is compatible with the available astrometric data of the star, as well as with the VLT/SPHERE and VLT/NaCo nondetection.


2012 ◽  
Vol 8 (S293) ◽  
pp. 263-269
Author(s):  
Morris Podolak ◽  
Nader Haghighipour

AbstractBoth the core-accretion and disk-instability models suggest that at the last stage of the formation of a gas-giant, the core of this object is surrounded by an extended gaseous envelope. At this stage, while the envelope is contracting, planetesimals from the protoplanetary disk may be scattered into the protoplanets atmosphere and deposit some or all of their materials as they interact with the gas. We have carried out extensive simulations of approximately 104 planetesimals interacting with a envelope of a Jupiter-mass protoplanet including effects of gas drag, heating, and the effect of the protoplanets extended mass distribution. Simulations have been carried out for different radii and compositions of planetesimals so that all three processes occur to different degrees. We present the results of our simulations and discuss their implications for the enrichment of ices in giant planets. We also present statistics for the probability of capture (i.e. total mass-deposition) of planetesimals as a function of their size, composition, and closest approach to the center of the protoplanetary body.


2020 ◽  
Vol 638 ◽  
pp. A5 ◽  
Author(s):  
I. Carleo ◽  
L. Malavolta ◽  
A. F. Lanza ◽  
M. Damasso ◽  
S. Desidera ◽  
...  

Context. The existence of hot Jupiters is still not well understood. Two main channels are thought to be responsible for their current location: a smooth planet migration through the protoplanetary disk or the circularization of an initial highly eccentric orbit by tidal dissipation leading to a strong decrease in the semimajor axis. Different formation scenarios result in different observable effects, such as orbital parameters (obliquity and eccentricity) or frequency of planets at different stellar ages. Aims. In the context of the GAPS Young Objects project, we are carrying out a radial velocity survey with the aim of searching and characterizing young hot-Jupiter planets. Our purpose is to put constraints on evolutionary models and establish statistical properties, such as the frequency of these planets from a homogeneous sample. Methods. Since young stars are in general magnetically very active, we performed multi-band (visible and near-infrared) spectroscopy with simultaneous GIANO-B + HARPS-N (GIARPS) observing mode at TNG. This helps in dealing with stellar activity and distinguishing the nature of radial velocity variations: stellar activity will introduce a wavelength-dependent radial velocity amplitude, whereas a Keplerian signal is achromatic. As a pilot study, we present here the cases of two known hot Jupiters orbiting young stars: HD 285507 b and AD Leo b. Results. Our analysis of simultaneous high-precision GIARPS spectroscopic data confirms the Keplerian nature of the variation in the HD 285507 radial velocities and refines the orbital parameters of the hot Jupiter, obtaining an eccentricity consistent with a circular orbit. Instead, our analysis does not confirm the signal previously attributed to a planet orbiting AD Leo. This demonstrates the power of the multi-band spectroscopic technique when observing active stars.


2021 ◽  
Vol 648 ◽  
pp. A59
Author(s):  
S. Petrus ◽  
M. Bonnefoy ◽  
G. Chauvin ◽  
B. Charnay ◽  
G.-D. Marleau ◽  
...  

Medium-resolution integral-field spectrographs (IFS) coupled with adaptive-optics such as Keck/OSIRIS, VLT/MUSE, or SINFONI are appearing as a new avenue for enhancing the detection and characterization capabilities of young, gas giant exoplanets at large heliocentric distances (>5 au). We analyzed K-band VLT/SINFONI medium-resolution (Rλ ~5577) observations of the young giant exoplanet HIP 65426 b. Our dedicated IFS data analysis toolkit (TExTRIS) optimized the cube building, star registration, and allowed for the extraction of the planet spectrum. A Bayesian inference with the nested sampling algorithm coupled with the self-consistent forward atmospheric models BT-SETTL15 and Exo-REM using the ForMoSA tool yields Teff = 1560 ± 100 K, log(g) ≤ 4.40 dex, [M/H] = 0.05−0.22+0.24 dex, and an upper limit on the C/O (≤0.55). The object is also re-detected with the so-called “molecular mapping” technique. The technique yields consistent atmospheric parameters, but the loss of the planet pseudo-continuum in the process degrades or modifies the constraints on these parameters. The solar to sub-solar C/O ratio suggests an enrichment by solids at formation if the planet was formed beyond the water snowline (≥20 au) by core accretion (CA hereafter). However, a formation by gravitational instability (GI hereafter) cannot be ruled out. The metallicity is compatible with the bulk enrichment of massive Jovian planets from the Bern planet population models. Finally, we measure a radial velocity of 26 ± 15 km s−1 compatible with our revised measurement on the star. This is the fourth imaged exoplanet for which a radial velocity can be evaluated, illustrating the potential of such observations for assessing the coevolution of imaged systems belonging to star forming regions, such as HIP 65426.


2018 ◽  
Vol 363 (9) ◽  
Author(s):  
Chunjian Liu ◽  
Qing Ai ◽  
Zhen Yao ◽  
Hualian Tian ◽  
Jiayun Shen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document