scholarly journals Densified Pupil Spectrograph as High-precision Radial Velocimetry: From Direct Measurement of the Universe’s Expansion History to Characterization of Nearby Habitable Planet Candidates

2022 ◽  
Vol 163 (2) ◽  
pp. 63
Author(s):  
Taro Matsuo ◽  
Thomas P. Greene ◽  
Mahdi Qezlou ◽  
Simeon Bird ◽  
Kiyotomo Ichiki ◽  
...  

Abstract The direct measurement of the universe’s expansion history and the search for terrestrial planets in habitable zones around solar-type stars require extremely high-precision radial-velocity measures over a decade. This study proposes an approach for enabling high-precision radial-velocity measurements from space. The concept presents a combination of a high-dispersion densified pupil spectrograph and a novel line-of-sight monitor for telescopes. The precision of the radial-velocity measurements is determined by combining the spectrophotometric accuracy and the quality of the absorption lines in the recorded spectrum. Therefore, a highly dispersive densified pupil spectrograph proposed to perform stable spectroscopy can be utilized for high-precision radial-velocity measures. A concept involving the telescope’s line-of-sight monitor is developed to minimize the change of the telescope’s line of sight over a decade. This monitor allows the precise measurement of long-term telescope drift without any significant impact on the Airy disk when the densified pupil spectra are recorded. We analytically derive the uncertainty of the radial-velocity measurements, which is caused by the residual offset of the lines of sight at two epochs. We find that the error could be reduced down to approximately 1 cm s−1, and the precision will be limited by another factor (e.g., wavelength calibration uncertainty). A combination of the high-precision spectrophotometry and the high spectral resolving power could open a new path toward the characterization of nearby non-transiting habitable planet candidates orbiting late-type stars. We present two simple and compact highly dispersed densified pupil spectrograph designs for cosmology and exoplanet sciences.

1999 ◽  
Vol 170 ◽  
pp. 204-210 ◽  
Author(s):  
I.N. Cummings ◽  
J.B. Hearnshaw ◽  
P.M. Kilmartin ◽  
A.C. Gilmore

AbstractHigh dispersion spectra for 44 southern evolved stars of spectral type K or M have been obtained. From these observations relative radial velocities of 50 m/s precision have been obtained by the method of digital cross-correlation. This method of achieving precise relative radial velocities for late-type stars, and the problems encountered in its use, are discussed. Using this method, statistically significant radial-velocity variations have been found. Two of the observed stars have their precise radial velocities presented and the potential mechanisms of their variation examined.


2017 ◽  
Vol 598 ◽  
pp. L7 ◽  
Author(s):  
P. Kervella ◽  
F. Thévenin ◽  
C. Lovis

Proxima and α Centauri AB have almost identical distances and proper motions with respect to the Sun. Although the probability of such similar parameters is, in principle, very low, the question as to whether they actually form a single gravitationally bound triple system has been open since the discovery of Proxima one century ago. Owing to HARPS high-precision absolute radial velocity measurements and the recent revision of the parameters of the α Cen pair, we show that Proxima and α Cen are gravitationally bound with a high degree of confidence. The orbital period of Proxima is ≈ 550 000 yr. With an eccentricity of 0.50+0.08-0.09, Proxima comes within 4.3+1.1-0.9 kau of α Cen at periastron, and is currently close to apastron (13.0+0.3-0.1 kau). This orbital motion may have influenced the formation or evolution of the recently discovered planet orbiting Proxima, as well as circumbinary planet formation around α Cen.


2012 ◽  
Vol 8 (S293) ◽  
pp. 201-203
Author(s):  
Masashi Omiya ◽  
Bun'ei Sato ◽  
Hiroki Harakawa ◽  
Masayuki Kuzuhara ◽  
Teruyuki Hirano ◽  
...  

AbstractWe have a plan to conduct a Doppler planet search for low-mass planets around nearby middle-to-late M dwarfs using IRD. IRD is the near-infrared high-precision radial velocity instrument for the Subaru 8.2-m telescope. We expect to achieve the accuracy of the radial velocity measurements of 1 m/s using IRD with a frequency comb as a wavelengh calibrator. Thus, we would detect super-Earths in habitable zone and low-mass rocky planets in close-in orbits around late-M dwarfs. In this survey, we aim to understand and discuss statistical properties of low-mass planets around low-mass M dwarfs compared with those derived from theoretical simulations.


2009 ◽  
Vol 37 ◽  
pp. 247-253 ◽  
Author(s):  
F. Bouchy ◽  
J. Isambert ◽  
C. Lovis ◽  
I. Boisse ◽  
P. Figueira ◽  
...  

2008 ◽  
Vol 4 (S253) ◽  
pp. 402-403
Author(s):  
Brandon Tingley ◽  
Gilles Sadowski ◽  
Christos Siopis

AbstractGaia, an ESA cornerstone mission, will obtain of the order of 100 high-precision photometric observations and lower precision radial velocity measurements over five years for around a billion stars – several hundred thousand of which will be eclipsing binaries. In order to extract the characteristics of these systems, a fully automated code must be available. During the process of this development, two tools that may be of use to the transit community have emerged: a very fast, simple, detached eclipsing binary simulator/solver based on a new approach and an interacting eclipsing binary simulator with most of the features of the Wilson-Devinney and Nightfall codes, but fully documented and written in easy-to-follow and highly portable Java. Currently undergoing development and testing, this code includes an intuitive graphical interface and an optimizer for the estimation of the physical parameters of the system.


1999 ◽  
Vol 170 ◽  
pp. 29-35
Author(s):  
John Hearnshaw ◽  
Norman Rumsey ◽  
Garry Nankivell

AbstractA new fiber-fed échelle spectrograph (Hercules) is being designed for the 1-m telescope at Mt John University Observatory. The goals are to have a wavelength capability of 380 to 880 nm, covered in a single exposure on a 50-mm square CCD, to have a choice of resolving powers of 35000 or 70000 and to have no moving parts. High precision radialvelocity observations are a major but not the only goal. Designs with both R2 (blaze angle 63.4 deg) and R4 (blaze angle 76 deg) échelle gratings are being considered, in either case with a dimension of 408 mm perpendicular to the grooves.


1958 ◽  
Vol 8 ◽  
pp. 1035-1041 ◽  
Author(s):  
G. Münch

In the first and second Symposia of this series von Weizsäcker and von Hoerner discussed the problem of turbulence in the Orion Nebula, while in the second Symposium Courtès has further treated the problem. Von Hoerner has presented a detailed discussion of the methodologies of the treatment. It was suggested that the observed variations in radial velocity in the nebula are consistent with the predictions of the Kolmogoroff equilibrium theory of turbulence, which is valid at sufficiently high Reynolds numbers. However, their results to some extent were inconclusive, mainly because the observations which they analyzed were not sufficiently numerous and accurate. With the purpose of reanalyzing the whole problem, Dr. O. C. Wilson and I undertook the task of determining radial velocities and profiles of selected emission lines in the spectrum of the nebula, using the largest practical resolving power in angle and frequency available with the 200-in. telescope. In order to use advantageously the efficiency of the instrument, we have photographed the brighter parts of the nebula (roughly subtending a solid angle of about 6′ aperture) with the Coudé spectrograph fitted with 31 parallel entrance slits, which are separated from each other by a distance of 1 mm in the focal plane or 1″.3 in the sky. In this manner we obtain in one exposure the spectrum of an area about 40″X40″ with a dispersion such that 1 μ = 0.27 km/sec. In each of these plates about 600 Doppler shifts of the lines [OII] λ3726, Hγ, and [OII] λ5007 have been measured, each of which represents some average value (not necessarily the same for the three lines) of the velocities of nebular matter along the line of sight. Altogether we have about 50 000 radial velocities measured. The accuracy with which a radial velocity may be determined is set by the intrinsic shape of the lines, which reflects the distribution of velocities along the line of sight. To give an idea of the orders of magnitude of the quantities involved, I may mention here that typical values of the mean widths h at half-intensity of the hydrogen, [OIII], and Fe—comparison lines are h(H) = 28.6 km/sec, h(OIII) = 20.0 km/sec, h(Fe) = 8.3 km/sec. The bisection of a line with a cross wire to an accuracy around 0.5 km/sec is thus feasible; repeated measurements have, indeed, shown such precision. On the assumption that the profiles to which the above widths correspond are Gaussian, we may easily disentangle the thermal and turbulent components of the mean square radial velocities, through the dependence on atomic weight of the former. We find from the representative values given aboveThe corresponding kinetic temperature is 9700°K, in close agreement with the value of the electron temperature determined by other methods.


2012 ◽  
Vol 8 (S293) ◽  
pp. 119-121
Author(s):  
Monika Lendl ◽  
Michaël Gillon ◽  
Didier Queloz

AbstractTransiting extrasolar planets provide unmatched insights into the structure and composition of close-in planets. When a planet transits its host star, its radius is known, which together with radial velocity measurements, allows accessing the planetary density. We present results obtained using the Euler and TRAPPIST telescopes that aim at reaching very high accuracy on the parameters derived from transit lightcurves. Here, we show the case of the recently discovered WASP-42b and WASP-49b and new observations of WASP-50b.


Sign in / Sign up

Export Citation Format

Share Document