scholarly journals Propagation Characteristics of Two Coronal Mass Ejections from the Sun Far into Interplanetary Space

2017 ◽  
Vol 837 (1) ◽  
pp. 4 ◽  
Author(s):  
Xiaowei Zhao ◽  
Ying D. Liu ◽  
Huidong Hu ◽  
Rui Wang
2000 ◽  
Vol 179 ◽  
pp. 177-183
Author(s):  
D. M. Rust

AbstractSolar filaments are discussed in terms of two contrasting paradigms. The standard paradigm is that filaments are formed by condensation of coronal plasma into magnetic fields that are twisted or dimpled as a consequence of motions of the fields’ sources in the photosphere. According to a new paradigm, filaments form in rising, twisted flux ropes and are a necessary intermediate stage in the transfer to interplanetary space of dynamo-generated magnetic flux. It is argued that the accumulation of magnetic helicity in filaments and their coronal surroundings leads to filament eruptions and coronal mass ejections. These ejections relieve the Sun of the flux generated by the dynamo and make way for the flux of the next cycle.


2008 ◽  
Vol 4 (S257) ◽  
pp. 271-277
Author(s):  
Bojan Vršnak ◽  
Dijana Vrbanec ◽  
Jaša Čalogović ◽  
Tomislav Žic

AbstractDynamics of coronal mass ejections (CMEs) is strongly affected by the interaction of the erupting structure with the ambient magnetoplasma: eruptions that are faster than solar wind transfer the momentum and energy to the wind and generally decelerate, whereas slower ones gain the momentum and accelerate. Such a behavior can be expressed in terms of “aerodynamic” drag. We employ a large sample of CMEs to analyze the relationship between kinematics of CMEs and drag-related parameters, such as ambient solar wind speed and the CME mass. Employing coronagraphic observations it is demonstrated that massive CMEs are less affected by the aerodynamic drag than light ones. On the other hand, in situ measurements are used to inspect the role of the solar wind speed and it is shown that the Sun-Earth transit time is more closely related to the wind speed than to take-off speed of CMEs. These findings are interpreted by analyzing solutions of a simple equation of motion based on the standard form for the drag acceleration. The results show that most of the acceleration/deceleration of CMEs on their way through the interplanetary space takes place close to the Sun, where the ambient plasma density is still high. Implications for the space weather forecasting of CME arrival-times are discussed.


2020 ◽  
Author(s):  
Fang Shen ◽  
Yousheng Liu ◽  
Yi Yang

<p>Previous research has shown that the deflection of coronal mass ejections (CMEs) in interplanetary space, especially fast CMEs, is a common phenomenon. The deflection caused by the interaction with background solar wind is an important factor to determine whether CMEs could hit Earth or not. As the Sun rotates, there will be interactions between solar wind flows with different speeds. When faster solar wind runs into slower solar wind<br>ahead, it will form a compressive area corotating with the Sun, which is called a corotating interaction region (CIR). These compression regions always have a higher density than the common background solar wind. When interacting with CME, will this make a difference in the deflection process of CME? In this research, first, a three-dimensional (3D) flux-rope CME initialization model is established based on the graduated cylindrical shell (GCS)<br>model. Then this CME model is introduced into the background solar wind, which is obtained using a 3D IN (INterplanetary) -TVD-MHD model. The Carrington Rotation (CR) 2154 is selected as an example to simulate the propagation and deflection of fast CME when it interacts with background solar wind, especially with the CIR structure.</p><p>The simulation results show that: (1) the fast CME will deflect eastward when it propagates into the background solar wind without the CIR; (2) when the fast CME hits the CIR on its west side, it will also deflect eastward, and the deflection angle will increase compared with the situation without CIR.</p>


2019 ◽  
Vol 6 (1) ◽  
pp. 1-13
Author(s):  
Ashish Mishra ◽  
Mukul Kumar

The present article is the successor of Solar Dynamical Processes I. The previous article was focused on the Sun, its magnetic field with an emphasis on various dynamical processes occurring on the Sun, e.g. sunspots, prominence and bright points which in turn plays a fundamental role in regulating the space weather. This article is emphasized on the solar dynamical processes and develop an extensive understanding of the various phenomena involved in their origin. The article also covers various models and hypothesis put forward by pioneer scientists on the basis of their observation by space-borne and ground-based instruments. This article shade light over a wide range of dynamical processes e.g., solar flares, coronal mass ejections, solar jets and coronal holes. Solar jets, the small-scale transient activities are found to have association with the other transient activities (e.g., mini-flares and mini-filaments). Flares as well as the coronal mass ejections are responsible for releasing a large amount of high energy charged particles and magnetic flux into the interplanetary space, and are being considered as the main drivers of space weather.


2018 ◽  
Vol 13 (S340) ◽  
pp. 89-90
Author(s):  
Miral Bhatt ◽  
Nandita Srivastava ◽  
Ravindra Jadhav

AbstractGenerally Coronal Mass Ejections (CMEs) are large eruptions of plasma and magnetic field from the Sun into interplanetary space. CMEs are most frequently associated with a variety of phenomena occurring in the lower corona before, during and after onset of eruption and generally are visible in coronagraph observation. Stealth CMEs do not obviously exhibit any of the low-coronal signatures (LCS) like solar flares, flows, jets, coronal dimmings or brightenings, filament eruptions or the formation of flare loop arcades. In this study, five stealth CMEs are selected using LASCO/SOHO CME catalogue and associated ICMEs (Interplanetaty CMEs) are identified using data from STEREO, ACE and WIND.


2004 ◽  
Vol 608 (2) ◽  
pp. 1100-1105 ◽  
Author(s):  
Pete Riley ◽  
J. T. Gosling ◽  
N. U. Crooker

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kazuo Shiokawa ◽  
Katya Georgieva

AbstractThe Sun is a variable active-dynamo star, emitting radiation in all wavelengths and solar-wind plasma to the interplanetary space. The Earth is immersed in this radiation and solar wind, showing various responses in geospace and atmosphere. This Sun–Earth connection variates in time scales from milli-seconds to millennia and beyond. The solar activity, which has a ~11-year periodicity, is gradually declining in recent three solar cycles, suggesting a possibility of a grand minimum in near future. VarSITI—variability of the Sun and its terrestrial impact—was the 5-year program of the scientific committee on solar-terrestrial physics (SCOSTEP) in 2014–2018, focusing on this variability of the Sun and its consequences on the Earth. This paper reviews some background of SCOSTEP and its past programs, achievements of the 5-year VarSITI program, and remaining outstanding questions after VarSITI.


Sign in / Sign up

Export Citation Format

Share Document