scholarly journals Wide-field12CO ($J=2\mbox{--}1$) and13CO ($J=2\mbox{--}1$) Observations toward the Aquila Rift and Serpens Molecular Cloud Complexes. I. Molecular Clouds and Their Physical Properties

2017 ◽  
Vol 837 (2) ◽  
pp. 154 ◽  
Author(s):  
Fumitaka Nakamura ◽  
Kazuhito Dobashi ◽  
Tomomi Shimoikura ◽  
Tomohiro Tanaka ◽  
Toshikazu Onishi
2015 ◽  
Vol 805 (2) ◽  
pp. 157 ◽  
Author(s):  
Timothy P. Ellsworth-Bowers ◽  
Jason Glenn ◽  
Allyssa Riley ◽  
Erik Rosolowsky ◽  
Adam Ginsburg ◽  
...  

2020 ◽  
Vol 498 (2) ◽  
pp. 2440-2455
Author(s):  
Yuxuan (宇轩) Yuan (原) ◽  
Mark R Krumholz ◽  
Blakesley Burkhart

ABSTRACT Molecular line observations using a variety of tracers are often used to investigate the kinematic structure of molecular clouds. However, measurements of cloud velocity dispersions with different lines, even in the same region, often yield inconsistent results. The reasons for this disagreement are not entirely clear, since molecular line observations are subject to a number of biases. In this paper, we untangle and investigate various factors that drive linewidth measurement biases by constructing synthetic position–position–velocity cubes for a variety of tracers from a suite of self-gravitating magnetohydrodynamic simulations of molecular clouds. We compare linewidths derived from synthetic observations of these data cubes to the true values in the simulations. We find that differences in linewidth as measured by different tracers are driven by a combination of density-dependent excitation, whereby tracers that are sensitive to higher densities sample smaller regions with smaller velocity dispersions, opacity broadening, especially for highly optically thick tracers such as CO, and finite resolution and sensitivity, which suppress the wings of emission lines. We find that, at fixed signal-to-noise ratio, three commonly used tracers, the J = 4 → 3 line of CO, the J = 1 → 0 line of C18O, and the (1,1) inversion transition of NH3, generally offer the best compromise between these competing biases, and produce estimates of the velocity dispersion that reflect the true kinematics of a molecular cloud to an accuracy of $\approx 10{{\ \rm per\ cent}}$ regardless of the cloud magnetic field strengths, evolutionary state, or orientations of the line of sight relative to the magnetic field. Tracers excited primarily in gas denser than that traced by NH3 tend to underestimate the true velocity dispersion by $\approx 20{{\ \rm per\ cent}}$ on average, while low-density tracers that are highly optically thick tend to have biases of comparable size in the opposite direction.


2003 ◽  
Vol 47 (6) ◽  
pp. 467-479
Author(s):  
A. G. Kislyakov ◽  
I. I. Zinchenko ◽  
L. E. B. Johansson

2016 ◽  
Vol 11 (S322) ◽  
pp. 133-136
Author(s):  
N. Butterfield ◽  
C.C. Lang ◽  
E. A. C. Mills ◽  
D. Ludovici ◽  
J. Ott ◽  
...  

AbstractWe present NH3 and H64α+H63α VLA observations of the Radio Arc region, including the M0.20 – 0.033 and G0.10 – 0.08 molecular clouds. These observations suggest the two velocity components of M0.20 – 0.033 are physically connected in the south. Additional ATCA observations suggest this connection is due to an expanding shell in the molecular gas, with the centroid located near the Quintuplet cluster. The G0.10 – 0.08 molecular cloud has little radio continuum, strong molecular emission, and abundant CH3OH masers, similar to a nearby molecular cloud with no star formation: M0.25+0.01. These features detected in G0.10 – 0.08 suggest dense molecular gas with no signs of current star formation.


1987 ◽  
Vol 115 ◽  
pp. 213-237 ◽  
Author(s):  
Ronald L. Snell

A wealth of data is now available on the energetic mass outflows that are associated with young stellar objects. This phenomenon is thought to occur at a very early stage in the evolution of stars of almost all masses. The discovery of this energetic event was first made through observations of the rapidly expanding molecular gas that surrounds many of these young stellar objects. A review of the physical properties, including the energetics and morphology, of the expanding molecular gas is presented in this paper. In addition, the role these energetic winds play in affecting the dynamics of the parental molecular clouds is also discussed. Finally, the results of detailed studies of the structure and kinematics of the high velocity molecular gas are reviewed and the evidence for existance of wind-swept cavities and molecular shells within the clouds are presented.


1990 ◽  
Vol 140 ◽  
pp. 319-320
Author(s):  
A.A. Goodman ◽  
P.C. Myers ◽  
P. Bastien ◽  
R.M. Crutcher ◽  
C. Heiles ◽  
...  

In Figure 1, we present a map of the polarization of background starlight in the Perseus region (Goodman, Bastien, Myers, and Menard 1989) superposed on contours of integrated 13CO emission (Bachiller and Cernicharo 1986). The polarization vectors map the plane-of-the-sky field (B⊥), assuming as usual that the observed polarization is the result of selective extinction by magnetically aligned dust grains associated with the molecular clouds between the observer and background stars (e.g. Dolginov 1989).


1991 ◽  
Vol 147 ◽  
pp. 177-181
Author(s):  
Paul F. Goldsmith

Our understanding of the molecular phase of the interstellar medium is critically dependent on use of various lines from different molecular species to trace this dense material. As our knowledge of molecular clouds becomes more refined, and we pursue in detail issues of molecular cloud structure, stability, and how star formation depends on and affects the molecular gas, it is appropriate to examine the basis by which we determine the morphology of clouds, their density, and other key parameters. This is obviously a major undertaking, well beyond the scope of the short presentation at this conference, so I will concentrate on one very basic, but critical issue, which is that of abundance variations of tracers of density and molecular column density which are widely used to delineate the denser portions of all types of molecular clouds. In this summary, I will first highlight some of the apparent indications of significant variations of abundance within individual clouds, as a way of indicating some potential dangers and the importance of the molecular tracer selected. I will also briefly suggest how such variations may be themselves important diagnostics of cloud structure and evolution.


1989 ◽  
Vol 120 ◽  
pp. 518-523
Author(s):  
Jan Palouš

AbstractThe evolution of large scale expanding structures in differentially rotating disks is studied. High column densities in some places may eventually lead to molecular cloud formation and initiate also star-formation. After some time, multi-structured arms evolve, where regions of intensive star-formation are separated from each other by regions of atomic gas or molecular clouds. This is due to the deterministic nature and to the coherence of this process. A simple model of galactic evolution is introduced and the different behaviour of Sa, Sb, and Sc galaxies is shown.


Sign in / Sign up

Export Citation Format

Share Document