scholarly journals The Eruption of a Prominence-carrying Coronal Flux Rope: Forward Synthesis of the Magnetic Field Strength Measurement by the COronal Solar Magnetism Observatory Large Coronagraph

2018 ◽  
Vol 866 (1) ◽  
pp. 57 ◽  
Author(s):  
Yuhong Fan ◽  
Sarah Gibson ◽  
Steve Tomczyk
2021 ◽  
Author(s):  
Stefaan Poedts ◽  
Anwesha Maharana ◽  
Camilla Scolini ◽  
Alexey Isavnin

<p>Previous studies of Coronal Mass Ejections (CMEs) have shown the importance of understanding their geometrical structure and internal magnetic field configuration for improving forecasting at Earth. The precise prediction of the CME shock and the magnetic cloud arrival time, their magnetic field strength and the orientation upon impact at Earth is still challenging and relies on solar wind and CME evolution models and precise input parameters. In order to understand the propagation of CMEs in the interplanetary medium, we need to understand their interaction with the complex features in the magnetized background solar wind which deforms, deflects and erodes the CMEs and determines their geo-effectiveness. Hence, it is important to model the internal magnetic flux-rope structure in the CMEs as they interact with CIRs/SIRs, other CMEs and solar transients in the heliosphere. The spheromak model (Verbeke et al. 2019) in the heliospheric wind and CME evolution simulation EUHFORIA (Pomoell and Poedts, 2018), fits well with the data near the CME nose close to its axis but fails to predict the magnetic field in CME legs when these impact Earth (Scolini et al. 2019). Therefore, we implemented the FRi3D stretched flux-rope CME model (Isavnin, 2016) in EUHFORIA to model a more realistic CME geometry. Fri3D captures the three-dimensional magnetic field structure with parameters like skewing, pancaking and flattening that quantify deformations experienced by an interplanetary CME. We perform test runs of real CME events and validate the ability of FRi3D coupled with EUHFORIA in predicting the CME geo-effectiveness. We have modeled two real events with FRi3D. First, a CME event on 12 July 2012 which was a head-on encounter at Earth. Second, the flank CME encounter of 14 June 2012 which did not leave any magnetic field signature at Earth when modeled with Spheromak. We compare our results with the results from non-magnetized cone simulations and magnetized simulations employing the spheromak flux-rope model. We further discuss how constraining observational parameters using the stretched flux rope CME geometry in FRi3D affects the prediction of the magnetic field strength in our simulations, highlighting improvements and discussing future perspective.</p><p><em>This research has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 870405 (EUHFORIA 2.0)</em></p>


2020 ◽  
Vol 637 ◽  
pp. A3 ◽  
Author(s):  
D. H. Mackay ◽  
B. Schmieder ◽  
A. López Ariste ◽  
Y. Su

Context. Direct magnetic field measurements in solar prominences occur infrequently and are difficult to make and interpret. As a consequence, alternative methods are needed to derive the main properties of the magnetic field that supports the prominence mass. This is important for our understanding of solar prominences, but also for understanding how eruptive prominences may affect space weather. Aims. We present the first direct comparison of the magnetic field strength derived from spectro-polarimetric observations of a solar prominence, with corresponding results from a theoretical flux rope model constructed from on-disc normal component magnetograms. Methods. We first used spectro-polarimetric observations of a prominence obtained with the magnetograph THEMIS operating in the Canary Islands to derive the magnetic field of the observed prominence by inverting the Stokes parameters measured in the He D3 line. Next, we constructed two data-constrained non-linear force-free field (NLFFF) models of the same prominence. In one model we assumed a strongly twisted flux rope solution, and in the other a weakly twisted flux rope solution. Results. The physical extent of the prominence at the limb (height and length) is best reproduced with the strongly twisted flux rope solution. The line-of-sight average of the magnetic field for the strongly twisted solution results in a magnetic field that has a magnitude of within a factor of 1−2 of the observed magnetic field strength. For the peak field strength along the line of sight, an agreement to within 20% of the observations is obtained for the strongly twisted solution. The weakly twisted solution produces significantly lower magnetic field strengths and gives a poor agreement with the observations. Conclusions. The results of this first comparison are promising. We found that the flux rope insertion method of producing a NLFFF is able to deduce the overall properties of the magnetic field in an observed prominence.


1976 ◽  
Vol 32 ◽  
pp. 613-622
Author(s):  
I.A. Aslanov ◽  
Yu.S. Rustamov

SummaryMeasurements of the radial velocities and magnetic field strength of β CrB were carried out. It is shown that there is a variability with the rotation period different for various elements. The curve of the magnetic field variation measured from lines of 5 different elements: FeI, CrI, CrII, TiII, ScII and CaI has a complex shape specific for each element. This may be due to the presence of magnetic spots on the stellar surface. A comparison with the radial velocity curves suggests the presence of a least 4 spots of Ti and Cr coinciding with magnetic spots. A change of the magnetic field with optical depth is shown. The curve of the Heffvariation with the rotation period is given. A possibility of secular variations of the magnetic field is shown.


1987 ◽  
Vol 107 (1) ◽  
pp. 50-58 ◽  
Author(s):  
Takayoshi Nakata ◽  
Yoshihiro Kawase ◽  
Masanori Nakano

2018 ◽  
Vol 615 ◽  
pp. A35 ◽  
Author(s):  
De-Fu Bu ◽  
Amin Mosallanezhad

Context. Observations indicate that wind can be generated in hot accretion flow. Wind generated from weakly magnetized accretion flow has been studied. However, the properties of wind generated from strongly magnetized hot accretion flow have not been studied. Aims. In this paper, we study the properties of wind generated from both weakly and strongly magnetized accretion flow. We focus on how the magnetic field strength affects the wind properties. Methods. We solve steady-state two-dimensional magnetohydrodynamic equations of black hole accretion in the presence of a largescale magnetic field. We assume self-similarity in radial direction. The magnetic field is assumed to be evenly symmetric with the equatorial plane. Results. We find that wind exists in both weakly and strongly magnetized accretion flows. When the magnetic field is weak (magnetic pressure is more than two orders of magnitude smaller than gas pressure), wind is driven by gas pressure gradient and centrifugal forces. When the magnetic field is strong (magnetic pressure is slightly smaller than gas pressure), wind is driven by gas pressure gradient and magnetic pressure gradient forces. The power of wind in the strongly magnetized case is just slightly larger than that in the weakly magnetized case. The power of wind lies in a range PW ~ 10−4–10−3 Ṁinc2, with Ṁin and c being mass inflow rate and speed of light, respectively. The possible role of wind in active galactic nuclei feedback is briefly discussed.


2003 ◽  
Vol 13 (12) ◽  
pp. 3783-3789 ◽  
Author(s):  
F. E. SMITH ◽  
P. LANGLEY ◽  
L. TRAHMS ◽  
U. STEINHOFF ◽  
J. P. BOURKE ◽  
...  

Multichannel magnetocardiography measures the magnetic field distribution of the human heart noninvasively from many sites over the body surface. Multichannel magnetocardiogram (MCG) analysis enables regional temporal differences in the distribution of cardiac magnetic field strength during depolarization and repolarization to be identified, allowing estimation of the global and local inhomogeneity of the cardiac activation process. The aim of this study was to compare the spatial distribution of cardiac magnetic field strength during ventricular depolarization and repolarization in both normal subjects and patients with cardiac abnormalities, obtaining amplitude measurements by magnetocardiography. MCGs were recorded at 49 sites over the heart from three normal subjects and two patients with inverted T-wave conditions. The magnetic field intensity during depolarization and repolarization was measured automatically for each channel and displayed spatially as contour maps. A Pearson correlation was used to determine the spatial relationship between the variables. For normal subjects, magnetic field strength maps during depolarization (R-wave) showed two asymmetric regions of magnetic field strength with a high positive value in the lower half of the chest and a high negative value above this. The regions of high R-wave amplitude corresponded spatially to concentrated asymmetric regions of high magnetic field strength during repolarization (T-wave). Pearson-r correlation coefficients of 0.7 (p<0.01), 0.8 (p<0.01) and 0.9 (p<0.01) were obtained from this analysis for the three normal subjects. A negative correlation coefficient of -0.7 (p<0.01) was obtained for one of the subjects with inverted T-wave abnormalities, suggesting similar but inverted magnetic field and current distributions to normal subjects. Even with the high correlation values in these four subjects, the MCG was able to identify differences in the distribution of magnetic field strength, with a shift in the T-wave relative to the R-wave. The measurement of cardiac magnetic field distribution during depolarization and repolarization of normal subjects and patients with clinical abnormalities should enable the improvement of theoretical models for the explanation of the cardiac depolarization and repolarization processes.


2019 ◽  
Vol 21 (25) ◽  
pp. 13696-13705 ◽  
Author(s):  
Alexey S. Kiryutin ◽  
Bogdan A. Rodin ◽  
Alexandra V. Yurkovskaya ◽  
Konstantin L. Ivanov ◽  
Dennis Kurzbach ◽  
...  

The magnetic field strength during sample transfer in dissolution dynamic nuclear polarization influences the resulting spectra.


1972 ◽  
Vol 50 (2) ◽  
pp. 116-118 ◽  
Author(s):  
C. W. T. Chien ◽  
R. E. Bardsley ◽  
F. W. Dalby

Zero-field level-crossing techniques have been used to measure some upper-state lifetimes of the helium atom. The half-widths of curves obtained by plotting the polarization against the magnetic field strength for the n1D–21D transitions yielded lifetimes of 2.03 × 10−8 s for the 31D state, 3.36 × 10−8 s for the 41D state, and 7.44 × 10−8 s for the 51D state. Collision cross sections for these 1D levels were also determined.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 61
Author(s):  
Yakun Tian ◽  
Shulei Song ◽  
Xuan Xu ◽  
Xinyu Wei ◽  
Shanwen Yan ◽  
...  

The bed pressure drop, minimum fluidized gas velocity, bed density, and bed expansion rate are important parameters characterizing the fluidization characteristics of gas-solid fluidized beds. By analyzing these parameters, the advantages and disadvantages of the fluidization state can be known. In this study, experiments were conducted to study the fluidization characteristics of a gas-solid magnetically fluidized bed for microfine particles by changing the magnetic field strength, magnetic field addition sequence, and static bed height. The experimental results show that when the magnetic field strength increased from 0 KA/m to 5 KA/m, the minimum fluidized gas velocity of particles increased from 4.42 cm/s to 10.32 cm/s, while the bed pressure drop first increased and then decreased. When the magnetic field strength is less than 3.4 KA/m, the microfine particles in the bed are mainly acted on by the airflow; while when the magnetic field strength is greater than 3.4 KA/m, the microfine particles are mainly dominated by the magnetic field. The magnetic field addition sequence affects the fluidization quality of microfine particles. The fluidized bed with ‘adding magnetic field first’ shows a more stable fluidization state than ‘adding magnetic field later’. Increasing of the static bed height reduces the bed expansion rate. The bed expansion rate is up to 112.5% at a static bed height of h0 = 40 mm and H = 5 KA/m. This will broaden the range of density regulation of a single magnetic particle and lay the advantage of gas-solid magnetically fluidized bed for microfine particles in the field of separation of fine coal.


Sign in / Sign up

Export Citation Format

Share Document