scholarly journals PALFA Single-pulse Pipeline: New Pulsars, Rotating Radio Transients, and a Candidate Fast Radio Burst

2018 ◽  
Vol 869 (2) ◽  
pp. 181 ◽  
Author(s):  
C. Patel ◽  
D. Agarwal ◽  
M. Bhardwaj ◽  
M. M. Boyce ◽  
A. Brazier ◽  
...  
2021 ◽  
Vol 922 (1) ◽  
pp. 43
Author(s):  
D. C. Good ◽  
B. C. Andersen ◽  
P. Chawla ◽  
K. Crowter ◽  
F. Q. Dong ◽  
...  

Abstract We report the discovery of seven new Galactic pulsars with the Canadian Hydrogen Intensity Mapping Experiment’s Fast Radio Burst (CHIME/FRB) backend. These sources were first identified via single pulses in CHIME/FRB, then followed up with CHIME/Pulsar. Four sources appear to be rotating radio transients, pulsar-like sources with occasional single-pulse emission with an underlying periodicity. Of those four sources, three have detected periods ranging from 220 ms to 2.726 s. Three sources have more persistent but still intermittent emission and are likely intermittent or nulling pulsars. We have determined phase-coherent timing solutions for the latter two. These seven sources are the first discovery of previously unknown Galactic sources with CHIME/FRB and highlight the potential of fast radio burst detection instruments to search for intermittent Galactic radio sources.


Author(s):  
Mayuresh P. Surnis ◽  
D. Agarwal ◽  
D. R. Lorimer ◽  
X. Pei ◽  
G. Foster ◽  
...  

Abstract We describe the design and deployment of GREENBURST, a commensal Fast Radio Burst (FRB) search system at the Green Bank Telescope. GREENBURST uses the dedicated L-band receiver tap to search over the 960–1 920 MHz frequency range for pulses with dispersion measures out to $10^4\ \rm{pc\,cm}^{-3}$ . Due to its unique design, GREENBURST is capable of conducting searches for FRBs when the L-band receiver is not being used for scheduled observing. This makes it a sensitive single pixel detector capable of reaching deeper in the radio sky. While single pulses from Galactic pulsars and rotating radio transients will be detectable in our observations, and will form part of the database we archive, the primary goal is to detect and study FRBs. Based on recent determinations of the all-sky rate, we predict that the system will detect approximately one FRB for every 2–3 months of continuous operation. The high sensitivity of GREENBURST means that it will also be able to probe the slope of the FRB fluence distribution, which is currently uncertain in this observing band.


2018 ◽  
Vol 866 (2) ◽  
pp. 152
Author(s):  
B. J. Shapiro-Albert ◽  
M. A. McLaughlin ◽  
E. F. Keane

2021 ◽  
Vol 922 (2) ◽  
pp. 115
Author(s):  
Kshitij Aggarwal ◽  
Devansh Agarwal ◽  
Evan F. Lewis ◽  
Reshma Anna-Thomas ◽  
Jacob Cardinal Tremblay ◽  
...  

Abstract We present an analysis of a densely repeating sample of bursts from the first repeating fast radio burst, FRB 121102. We reanalyzed the data used by Gourdji et al. and detected 93 additional bursts using our single-pulse search pipeline. In total, we detected 133 bursts in three hours of data at a center frequency of 1.4 GHz using the Arecibo telescope, and develop robust modeling strategies to constrain the spectro-temporal properties of all of the bursts in the sample. Most of the burst profiles show a scattering tail, and burst spectra are well modeled by a Gaussian with a median width of 230 MHz. We find a lack of emission below 1300 MHz, consistent with previous studies of FRB 121102. We also find that the peak of the log-normal distribution of wait times decreases from 207 to 75 s using our larger sample of bursts, as compared to that of Gourdji et al. Our observations do not favor either Poissonian or Weibull distributions for the burst rate distribution. We searched for periodicity in the bursts using multiple techniques, but did not detect any significant period. The cumulative burst energy distribution exhibits a broken power-law shape, with the lower- and higher-energy slopes of −0.4 ± 0.1 and −1.8 ± 0.2, with the break at (2.3 ± 0.2) × 1037 erg. We provide our burst fitting routines as a Python package burstfit 4 4 https://github.com/thepetabyteproject/burstfit that can be used to model the spectrogram of any complex fast radio burst or pulsar pulse using robust fitting techniques. All of the other analysis scripts and results are publicly available. 5 5 https://github.com/thepetabyteproject/FRB121102


2017 ◽  
Vol 14 (S339) ◽  
pp. 27-32
Author(s):  
B. W. Stappers ◽  
M. Caleb ◽  
L. N. Driessen

AbstractThe radio sky is full of transients, their time-scales ranging from nanoseconds to decades. Recent developments in technology sensitivity and computing capabilities have opened up the short end of that range, and are revealing a plethora of new phenomenologies. Studies of radio transients were previously restricted to analyses of archived data, but are now including real-time analyses. We focus here on Fast Radio Bursts, discuss and compare the properties of the population, and describe what is to date the only known repeating Fast Radio Burst and its host galaxy. We also review what will be possible with the new instrumentation coming online.


2017 ◽  
Vol 848 (1) ◽  
pp. 72
Author(s):  
B.-Y. Cui ◽  
J. Boyles ◽  
M. A. McLaughlin ◽  
N. Palliyaguru

Author(s):  
B. W. Meyers ◽  
S. E. Tremblay ◽  
N. D. R. Bhat ◽  
R. M. Shannon ◽  
S. M. Ord ◽  
...  

AbstractRotating Radio Transients (RRATs) represent a relatively new class of pulsar, primarily characterised by their sporadic bursting emission of single pulses on time scales of minutes to hours. In addition to the difficulty involved in detecting these objects, low-frequency ( $ \lt 300\,\text{MHz}$ ) observations of RRATs are sparse, which makes understanding their broadband emission properties in the context of the normal pulsar population problematic. Here, we present the simultaneous detection of RRAT J2325−0530 using the Murchison Widefield Array (154 MHz) and Parkes radio telescope ( $1.4\,\text{GHz}$ ). On a single-pulse basis, we produce the first polarimetric profile of this pulsar, measure the spectral index ( $\alpha={-2.2\pm 0.1}$ ), pulse energy distributions, and present the pulse rates in the context of detections in previous epochs. We find that the distribution of time between subsequent pulses is consistent with a Poisson process and find no evidence of clustering over the $\sim\!1.5\,\text{h}$ observations. Finally, we are able to quantify the scintillation properties of RRAT J2325−0530 at 1.4 GHz, where the single pulses are modulated substantially across the observing bandwidth, and show that this characterisation is feasible even with irregular time sampling as a consequence of the sporadic emission behaviour.


2012 ◽  
Vol 8 (S291) ◽  
pp. 95-100 ◽  
Author(s):  
S. Burke-Spolaor

AbstractSix years ago, the discovery of Rotating Radio Transients (RRATs) marked what appeared to be a new type of sparsely-emitting pulsar. Since 2006, more than 70 of these objects have been discovered in single-pulse searches of archival and new surveys. With a continual inflow of new information about the RRAT population in the form of new discoveries, multi-frequency follow ups, coherent timing solutions, and pulse rate statistics, a view is beginning to form of the place in the pulsar population RRATs hold. Here we review the properties of neutron stars discovered through single pulse searches. We first seek to clarify the definition of the term RRAT, emphasising that “the RRAT population” encompasses several phenomenologies. A large subset of RRATs appears to represent the tail of an extended distribution of pulsar nulling fractions and activity cycles; these objects present several key open questions remaining in this field.


Sign in / Sign up

Export Citation Format

Share Document